Synlett 2017; 28(16): 2194-2198
DOI: 10.1055/s-0036-1588475
letter
© Georg Thieme Verlag Stuttgart · New York

A Highly Efficient Gold(I)-Catalyzed Mukaiyama–Mannich Reaction of α-Amino Sulfones with Fluorinated Silyl Enol Ethers To Give β-Amino α-Fluorinated Ketones

Xiao-Si Hu
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
,
Yi Du
b   Xinhua Hospital, affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, Shanghai 200032, P. R. of China
,
Jin-Sheng Yu*
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
,
Fu-Min Liao
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
,
Pei-Gang Ding
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
,
Jian Zhou*
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. of China   Email: jzhou@chem.ecnu.edu.cn
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
Financial support from the 973 program (2015CB856600) and ­National Natural Science Foundation of China (21472049) is appreciated.
Further Information

Publication History

Received: 12 March 2017

Accepted after revision: 22 May 2017

Publication Date:
12 July 2017 (online)


◊ These authors contributed equally to this work

Abstract

Ph3PAuOTf was identified as a powerful catalyst for the ­Mukaiyama–Mannich reaction of fluorinated silyl enol ethers with α-amino sulfones. This provides ready access to β-amino α-fluorinated ketones in good to excellent yields.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Kobayashi S. Mori Y. Fossey JS. Salter MM. Chem. Rev. 2011; 111: 2626
    • 1b Kumagai N. Shibasaki M. Bull. Chem. Soc. Jpn. 2015; 88: 503

      For base-mediated examples, see:
    • 3a Weygand F. Steglich W. Oettmeier W. Chem. Ber. 1970; 103: 818
    • 3b Mecozzi T. Petrini M. J. Org. Chem. 1999; 64: 8970
    • 3c Dahmen S. Bräse S. J. Am. Chem. Soc. 2002; 124: 5940
    • 3d Song J. Shih H.-W. Deng L. Org. Lett. 2007; 9: 603
    • 3e Palomo C. Oiarbide M. Laso A. López R. J. Am. Chem. Soc. 2005; 127: 17622
    • 3f Fini F. Sgarzani V. Pettersen D. Herrera RP. Bernardi L. Ricci A. Angew. Chem. Int. Ed. 2005; 44: 7975 ; and references cited therein

      For selected examples of the use of catalytic amounts of Lewis acids:
    • 4a Ollevier T. Nadeau E. Eguillon J.-C. Adv. Synth. Catal. 2006; 348: 2080
    • 4b Ollevier T. Li Z. Org. Biomol. Chem. 2006; 4: 4440
    • 4c Ollevier T. Li Z. Adv. Synth. Catal. 2009; 351: 3251
    • 4d Das B. Damodar K. Saritha D. Chowdhury N. Krishnaiah M. Tetrahedron Lett. 2007; 48: 7930
    • 4e Kumar RS. C. Reddy GV. Babu KS. Rao JM. Chem. Lett. 2009; 38: 564
    • 4f Thirupathi P. Kim SS. Tetrahedron 2010; 66: 8623
    • 4g Cao Z.-Y. Zhang Y. Ji C.-B. Zhou J. Org. Lett. 2011; 13: 6398
    • 4h Lee S.-H. Kadam ST. Bull. Korean Chem. Soc. 2011; 32: 3738
    • 4i Wang Q. Leutzsch M. van Gemmeren M. List B. J. Am. Chem. Soc. 2013; 135: 15334

      For a review, see:
    • 6a Decostanzi M. Campagne J.-M. Leclerc E. Org. Biomol. Chem. 2015; 13: 7351

    • For Mannich-type reactions, see:
    • 6b Kodama Y. Okumura M. Yanabu N. Taguchi T. Tetrahedron Lett. 1996; 37: 1061
    • 6c Jonet S. Cherouvrier F. Brigaud T. Portella C. Eur. J. Org. Chem. 2005; 4304
    • 6d Chu L. Zhang X. Qing F.-L. Org. Lett. 2009; 11: 2197
    • 6e Yuan Z. Wei Y. Shi M. Chin. J. Chem. 2010; 28: 1709
    • 6f Yuan Z. Mei L. Wei Y. Shi M. Kattamuri PV. McDowell P. Li G. Org. Biomol. Chem. 2012; 10: 2509
    • 6g Kashikura W. Mori K. Akiyama T. Org. Lett. 2011; 13: 1860

    • For aldol reactions, see:
    • 6h Chorki F. Grellepois F. Crousse B. Ourévitch M. Bonnet-Delpon D. Bégué J.-P. J. Org. Chem. 2001; 66: 7858
    • 6i Lefebvre O. Brigaud T. Portella C. J. Org. Chem. 2001; 66: 1941
    • 6j Decostanzi M. Godemert J. Oudeyer S. Levacher V. Campagne J.-M. Leclerc E. Adv. Synth. Catal. 2016; 358: 526

    • For cross-coupling reactions, see:
    • 6k Guo Y. Shreeve J.-M. Chem. Commun. 2007; 3583
    • 6l Uneyama K. Tanaka H. Kobayashi S. Shioyama M. Amii H. Org. Lett. 2004; 6: 2733

    • For allylation, see:
    • 6m Bélanger É. Cantin K. Messe O. Tremblay M. Paquin J.-F. J. Am. Chem. Soc. 2007; 129: 1034

      For reviews, see:
    • 7a Pesenti C. Viani F. ChemBioChem 2004; 5: 590
    • 7b Liu Y.-L. Yu J.-S. Zhou J. Asian J. Org. Chem. 2013; 2: 194
    • 7c Lin J.-H. Xiao J.-C. Tetrahedron Lett. 2014; 55: 6147
    • 7d Ni C. Zhu L. Hu J. Acta Chim. Sinica 2015; 73: 90
    • 7e Champagne PA. Desroches J. Hamel J.-D. Vandamme M. Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 8a Uoto K. Ohsuki S. Takenoshita H. Ishiyama T. Iimura S. Hirota Y. Mitsui I. Terasawa H. Soga T. Chem. Pharm. Bull. 1997; 45: 1793
    • 8b Nakayama K. Kawato HC. Inagaki H. Nakajima R. Kitamura A. Someya K. Ohta T. Org. Lett. 2000; 2: 977
    • 8c Cholongitas E. Papatheodoridis GV. Ann. Gastroenterol. 2014; 27: 331
    • 9a Liu Y.-L. Zhou J. Chem. Commun. 2012; 48: 1919
    • 9b Liu Y.-L. Liao F.-M. Niu Y.-F. Zhao X.-L. Zhou J. Org. Chem. Front. 2014; 1: 742
    • 9c Liu Y.-L. Zeng X.-P. Zhou J. Acta Chim. Sinica 2012; 70: 1451
    • 9d Yu J.-S. Liu Y.-L. Tang J. Wang X. Zhou J. Angew. Chem. Int. Ed. 2014; 53: 9512
    • 9e Liao F.-M. Liu Y.-L. Yu J.-S. Zhou F. Zhou J. Org. Biomol. Chem. 2015; 13: 8906
    • 9f Yu J.-S. Zhou J. Org. Biomol. Chem. 2015; 13: 10968
    • 9g Yu J.-S. Zhou J. Org. Chem. Front. 2016; 3: 298
    • 9h Yu J.-S. Liao F.-M. Gao W.-M. Liao K. Zuo R.-L. Zhou J. Angew. Chem. Int. Ed. 2015; 54: 7381
    • 9i Zeng X.-P. Zhou J. J. Am. Chem. Soc. 2016; 138: 8730
    • 9j Liao F.-M. Cao Z.-Y. Yu J.-S. Zhou J. Angew. Chem. Int. Ed. 2017; 56: 2459
    • 10a Amii H. Kobayashi T. Hatamoto Y. Uneyama K. Chem. Commun. 1999; 1323
    • 10b Amii H. Kobayashi T. Terasawa H. Uneyama K. Org. Lett. 2001; 3: 3103
    • 10c Huguenot F. Billac A. Brigaud T. Portella C. J. Org. Chem. 2008; 73: 2564
    • 10d Prakash GK. S. Hu J. Olah GA. J. Fluorine Chem. 2001; 112: 355

      For selected reviews on gold catalysis:
    • 11a Hashmi AS. K. Chem. Rev. 2007; 107: 3180
    • 11b Bongers N. Krause N. Angew. Chem. Int. Ed. 2008; 47: 2178
    • 11c Arcadi A. Chem. Rev. 2008; 108: 3266
    • 11d Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 11e Fürstner A. Acc. Chem. Res. 2014; 47: 925
    • 11f Wei F. Song CL. Ma L. Zhou Y.-D. Tung C.-H. Xu Z.-H. Sci. Bull. 2015; 60: 1479

      For selected examples of Au(I) as a σ-Lewis acid catalyst, see:
    • 12a Ito Y. Sawamura M. Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
    • 12b Pastor SD. Togni A. J. Am. Chem. Soc. 1989; 111: 2333
    • 12c Hayashi T. Kishi E. Soloshonok VA. Uozumi Y. Tetrahedron Lett. 1996; 37: 4969
    • 12d Melhado AD. Amarante GW. Wang ZJ. Luparia M. Toste FD. J. Am. Chem. Soc. 2011; 133: 3517
    • 12e Lin C.-C. Teng T.-M. Tsai C.-C. Liao H.-Y. Liu R.-S. J. Am. Chem. Soc. 2008; 130: 16417
    • 12f Martín-Rodríguez M. Nájera C. Sansano JM. de Cózar A. Cossío FP. Chem. Eur. J. 2011; 17: 14224
    • 12g Padilla S. Adrio J. Carretero JC. J. Org. Chem. 2012; 77: 4161
    • 12h Zhang M. Yang H. Zhang Y. Zhu C. Li W. Cheng Y. Hu H. Chem. Commun. 2011; 47: 6605
    • 12i Jagdale AR. Park JH. Youn SW. J. Org. Chem. 2011; 76: 7204
    • 12j Liu B. Li K.-N. Luo S.-W. Huang J.-Z. Pang H. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 3323
    • 12k Shu C. Wang Y.-H. Zhou B. Li X.-L. Ping Y.-F. Lu X. Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567

      For reviews, see:
    • 13a Nishizawa M. Imagawa H. Yamamoto H. Org. Biomol. Chem. 2010; 8: 511

    • For our efforts on Hg(II) catalysis, see:
    • 13b Zhou F. Cao Z.-Y. Zhang J. Yang H.-B. Zhou J. Chem. Asian J. 2012; 7: 233
    • 13c Cao Z.-Y. Zhou F. Yu Y.-H. Zhou J. Org. Lett. 2013; 15: 42
    • 13d Cao Z.-Y. Jiang J.-S. Zhou J. Org. Biomol. Chem. 2016; 14: 5500
  • 14 For Au-catalyzed Mannich reactions, see Refs. 12c and 12d.
  • 15 Because Bi(OTf)3 was slightly inferior to Ph3PAuOTf in terms of the yield of 3a (Table 1), we also examined its performance in other solvents, such as ethyl acetate, toluene, or MeCN, but no better result was obtained (the yields of 3a were 21, 55, and 58%, respectively). When Bi(OTf)3 was used to mediate the reaction of the aliphatic aldehyde-derived sulfones 1k and 1l, the desired products 3k and 3l were obtained in 15 and 10% yield, respectively, which were much lower than those obtained by using the Au(I) catalyst.
  • 16 tert-Butyl (2,2-Difluoro-3-oxo-1,3-diphenylpropyl)carbamate (3a); Typical Procedure Under N2, a 25 mL dry Schleck tube was charged with Ph3PAuCl (0.0075 mmol, 3.7 mg) and AgOTf (0.0075 mmol, 1.9 mg), followed by anhyd DCE (2.5 mL). The solution was stirred at r.t. for about 15 min, and then the α-amino sulfone 1a (0.25 mmol) and the fluorinated silyl enol ether 2a (0.375 mmol) were added sequentially. The mixture was stirred at r.t. until 1a was fully converted (TLC), and then purified directly by flash column chromatography to give a white solid; yield: 80.4 mg (89%); mp 136–138 °C. 1H NMR (300 MHz, CDCl3): δ = 8.01–7.98 (m, 2 H), 7.65–7.60 (m, 1 H), 7.50–7.45 (m, 2 H), 7.36–7.34 (m, 5 H), 5.62–5.54 (m, 2 H), 1.40 (s, 9 H). 19F NMR (282 MHz, CDCl3): δ = –105.86 (d, J F–F = 275.8 Hz, 1 F), –107.06 (d, J F–F = 275.2 Hz, 1 F). 13C NMR (100 MHz, CDCl3): δ =188.88 (t, J C–F = 28.5 Hz), 154.70, 134.37, 133.90, 132.34 (t, J C–F = 1.9 Hz), 129.83 (t, J C–F = 3.5 Hz), 128.67, 128.56, 128.36, 116.78 (t, J C–F = 258.3 Hz), 80.47, 57.08 (t, J C–F = 24.5 Hz), 28.14.