Synthesis 2017; 49(22): 4899-4916
DOI: 10.1055/s-0036-1588577
review
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approaches to 2,6-trans-Tetrahydropyrans

Zhihong Zhang
Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong, P. R. of China
,
Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong, P. R. of China
HKUST Shenzhen Research Institute, Shenzhen 518057, P. R. of China   rtong@ust.hk
› Author Affiliations
This research was financially supported by the Research Grant Council of Hong Kong (GRF 605113, GRF 16305314, and GRF 16311716), HKUST (Start-up R9309) and the National Natural Science Foundation of China (No. 21472160)
Further Information

Publication History

Received: 15 June 2017

Accepted after revision: 12 July 2017

Publication Date:
28 September 2017 (eFirst)

Abstract

Being different from 2,6-cis-tetrahydropyrans (2,6-cis-THPs), the corresponding 2,6-trans-THPs are thermodynamically less stable and more challenging to construct. The fact that there are many natural products and/or bioactive molecules containing this 2,6-trans-THP subunit has led to the development of many efficient synthetic approaches to access 2,6-trans-THPs. This review summarizes various synthetic methods reported for this structural motif and/or related applications in the total synthesis of natural products.

1 Introduction

2 Nucleophilic Addition to an Oxocarbenium Ion (Strategy A)

3 Intramolecular Oxa-Michael Addition (Strategy B)

4 Intermolecular Michael Addition to Dihydropyranones (Strategy A)

5 The Heck–Matsuda (Strategy A) Reaction and Oxa-Heck Cyclization (Strategy B)

6 Intramolecular SN2 Substitution and Epoxide Opening (Strategy B)

7 Miscellaneous Methods

8 Conclusion and Outlook

 
  • References

  • 2 Vetica F. Chauhan P. Dochain S. Enders D. Chem. Soc. Rev. 2017; 46: 1661
  • 3 Smith AB. III. Fox RJ. Razler TM. Acc. Chem. Res. 2008; 41: 675
    • 4a Clarke PA. Santos S. Mistry N. Burroughs L. Humphries AC. Org. Lett. 2011; 13: 624
    • 4b Iqbal M. Mistry N. Clarke PA. Tetrahedron 2011; 67: 4960
    • 4c For a recent review, see: Clarke PA. Ermanis K. Curr. Org. Chem. 2013; 17: 2025
  • 5 Olier C. Kaafarani M. Gastaldi S. Bertrand MP. Tetrahedron 2010; 66: 413
  • 6 Fuwa H. Heterocycles 2012; 85: 1255
  • 7 Kotsuki H. Synlett 1992; 97
    • 8a Kasai Y. Ito T. Sasaki M. Org. Lett. 2012; 14: 3186
    • 8b Ghosh AK. Gong G. Chem. Asian J. 2008; 3: 1811
    • 8c Raghavan S. Samanta PK. Org. Lett. 2012; 14: 2346
    • 8d Evans DA. Kværnø L. Dunn TB. Beauchemin A. Raymer B. Mulder JA. Olhava EJ. Juhl M. Kagechika K. Favor DA. J. Am. Chem. Soc. 2008; 130: 16295
    • 8e Ruijter E. Schültingkemper H. Wessjohann LA. J. Org. Chem. 2005; 70: 2820
  • 9 Yu M. Ibrahem I. Hasegawa M. Schrock RR. Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 2788
  • 10 Kartika R. Gruffi TR. Taylor RE. Org. Lett. 2008; 10: 5047
    • 11a Bai Y. Davis DC. Dai M. Angew. Chem. Int. Ed. 2014; 53: 6519
    • 11b Semmelhack MF. Bodurow C. J. Am. Chem. Soc. 1984; 106: 1496
    • 11c Yang Z. Zhang B. Zhao G. Yang J. Xie X. She X. Org. Lett. 2011; 13: 5916
    • 12a Mori Y. Yaegashi K. Furukawa H. J. Am. Chem. Soc. 1996; 118: 8158
    • 12b Morimoto Y. Nishikawa Y. Takaishi M. J. Am. Chem. Soc. 2005; 127: 5806
    • 12c Morimoto Y. Yata H. Nishikawa Y. Angew. Chem. Int. Ed. 2007; 46: 6481
    • 12d Vilotijevic I. Jamison TF. Science 2007; 317: 1189
    • 12e Simpson GL. Heffron TP. Merino E. Jamison TF. J. Am. Chem. Soc. 2006; 128: 1056
    • 12f Ho P.-T. Can. J. Chem. 1982; 60: 90
    • 12g Burke SD. Woon Jung K. Phillips JR. Perri RE. ­Tetrahedron Lett. 1994; 35: 703
    • 13a Reymond S. Ferrié L. Guérinot A. Capdevielle P. Cossy J. Pure Appl. Chem. 2008; 80: 1683
    • 13b Norcross RD. Paterson I. Chem. Rev. 1995; 95: 2041
    • 13c Yu MJ. Zheng W. Seletsky BM. Nat. Prod. Rep. 2013; 30: 1158
    • 13d Martin HJ. Magauer T. Mulzer J. Angew. Chem. Int. Ed. 2010; 49: 5614
    • 13e Nasir NM. Ermanis K. Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
    • 13f Little RD. Nishiguchi GA. Synthetic Efforts Toward, and Biological Activity of Thyrsiferol and Structurally-Related Analogues. In Studies in Natural Products Chemistry. Vol. 35 Atta-ur-Rahman Elsevier; Oxford: 2008: 3-56
    • 14a Kobayashi M. Tanaka J.-i. Katori T. Matsuura M. Yamashita M. Kitagawa I. Chem. Pharm. Bull. 1990; 38: 2409
    • 14b Doi M. Ishida T. Kobayashi M. Kitagawa I. J. Org. Chem. 1991; 56: 3629
    • 14c Kitagawa I. Kobayashi M. Katori T. Yamashita M. Tanaka J. Doi M. Ishida T. J. Am. Chem. Soc. 1990; 112: 3710
    • 14d Kobayashi M. Tanaka J.-i. Katori T. Matsuura M. Kitagawa I. Tetrahedron Lett. 1989; 30: 2963
    • 14e Carmely S. Kashman Y. Tetrahedron Lett. 1985; 26: 511
    • 15a Pettit GR. Xu J.-P. Chapuis J.-C. Pettit RK. Tackett LP. Doubek DL. Hooper JN. A. Schmidt JM. J. Med. Chem. 2004; 47: 1149
    • 15b Cichewicz RH. Valeriote FA. Crews P. Org. Lett. 2004; 6: 1951
  • 16 Gouiffès D. Moreau S. Helbecque N. Bernier JL. Hénichart JP. Barbin Y. Laurent D. Verbist JF. Tetrahedron 1988; 44: 451
  • 17 Kito K. Ookura R. Yoshida S. Namikoshi M. Ooi T. Kusumi T. Org. Lett. 2008; 10: 225
  • 18 D’Ambrosio M. Guerriero A. Pietra F. Debitus C. Helv. Chim. Acta 1996; 79: 51
  • 19 Kunze B. Jansen R. Sasse F. Höfle G. Reichenbach H. J. Antibiot. 1998; 51: 1075
    • 20a Brooks HA. Gardner D. Poyser JP. King TJ. J. Antibiot. 1984; 37: 1501
    • 20b Gräfe U. Schade W. Roth M. Radics L. Incze M. Ujszaszy K. J. Antibiot. 1984; 37: 836
    • 20c Radics L. J. Chem. Soc., Chem. Commun. 1984; 599
  • 21 Yin J. Kouda K. Tezuka Y. Le Tran Q. Miyahara T. Chen Y. Kadota S. Planta Med. 2004; 70: 54
    • 22a Romero JA. C. Tabacco SA. Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168
    • 22b Woods RJ. Andrews CW. Bowen JP. J. Am. Chem. Soc. 1992; 114: 859
  • 23 Graczyk PP. Mikołajczyk M. Anomeric Effect: Origin and Consequences . In Topics in Stereochemistry . Vol. 21 Eliel EL. Wilen SH. John Wiley & Sons; Hoboken: 2007: 59-349
    • 24a Zhu L. Hu Y. Sun F. Huang Y. Adv. Sci. Focus 2014; 2: 97
    • 24b Shing TK. M. Li L.-H. J. Org. Chem. 1997; 62: 1230
  • 25 Lewis MD. Cha JK. Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
  • 26 Mikami K. Kishino H. J. Chem. Soc., Chem. Commun. 1993; 1843
  • 27 Giannis A. Sandhoff K. Tetrahedron Lett. 1985; 26: 1479
  • 28 Gaertzen O. Misske AM. Wolbers P. Hoffmann HM. R. Synlett 1999; 1041
  • 29 Hoffmann RW. Schlapbach A. Tetrahedron Lett. 1993; 34: 7903
  • 30 Ayala L. Lucero CG. Romero JA. C. Tabacco SA. Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
  • 31 Horita K. Sakurai Y. Nagasawa M. Hachiya S. Yonemitsu O. Synlett 1994; 43
    • 32a Paterson I. Cumming JG. Tetrahedron Lett. 1992; 33: 2847
    • 32b Keck GE. Lundquist GD. J. Org. Chem. 1999; 64: 4482
    • 33a Kopecky DJ. Rychnovsky SD. J. Am. Chem. Soc. 2001; 123: 8420
    • 33b Wipf P. Reeves JT. Chem. Commun. 2002; 2066
  • 34 Stamos DP. Kishi Y. Tetrahedron Lett. 1996; 37: 8643
  • 35 Lewis A. Stefanuti I. Swain SA. Smith SA. Taylor RJ. K. Tetrahedron Lett. 2001; 42: 5549
  • 36 Lewis A. Stefanuti I. Swain SA. Smith SA. Taylor RJ. K. Org. Biomol. Chem. 2003; 1: 104
  • 37 Hornberger KR. Hamblett CL. Leighton JL. J. Am. Chem. Soc. 2000; 122: 12894
  • 38 Evans PA. Cui J. Gharpure SJ. Hinkle RJ. J. Am. Chem. Soc. 2003; 125: 11456
  • 39 Kartika R. Taylor RE. Angew. Chem. Int. Ed. 2007; 46: 6874
  • 40 Mohapatra DK. Das PP. Pattanayak MR. Yadav JS. Chem. Eur. J. 2010; 16: 2072
  • 41 Yadav JS. Pattanayak MR. Das PP. Mohapatra DK. Org. Lett. 2011; 13: 1710
  • 42 Yadav JS. Gyanchander E. Mishra AK. Adithya P. Das S. Tetrahedron Lett. 2013; 54: 5879
  • 43 Maity S. Kanikarapu S. Marumudi K. Kunwar AC. Yadav JS. Mohapatra DK. J. Org. Chem. 2017; 82: 4561
  • 44 Cui J. Morita M. Ohno O. Kimura T. Teruya T. Watanabe T. Suenaga K. Shibasaki M. Chem. Eur. J. 2017; 23: 8500
    • 45a Teruaki M. Koichi N. Kazuo B. Chem. Lett. 1973; 2: 1011
    • 45b Kan SB. J. Ng KK. H. Paterson I. Angew. Chem. Int. Ed. 2013; 52: 9097
    • 45c Matsuo J.-i. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109
    • 45d Beutner GL. Denmark SE. Angew. Chem. Int. Ed. 2013; 52: 9086
  • 46 Patron A. Richter P. Tomaszewski M. Miller R. Nicolaou K. J. Chem. Soc., Chem. Commun. 1994; 1147
  • 47 Smith AB. III. Verhoest PR. Minbiole KP. Lim JJ. Org. Lett. 1999; 1: 909
  • 48 Su Q. Dakin LA. Panek JS. J. Org. Chem. 2007; 72: 2
    • 49a Williams DR. Patnaik S. Plummer SV. Org. Lett. 2003; 5: 5035
    • 49b Paterson I. Tudge M. Angew. Chem. Int. Ed. 2003; 42: 343
    • 49c Wang Y. Janjic J. Kozmin SA. J. Am. Chem. Soc. 2002; 124: 13670
  • 50 Rybak T. Hall DG. Org. Lett. 2015; 17: 4156
  • 51 Crimmins MT. Stevens JM. Schaaf GM. Org. Lett. 2009; 11: 3990
  • 52 Dixon DJ. Ley SV. Tate EW. J. Chem. Soc., Perkin Trans. 1 2000; 2385
  • 53 Tomooka K. Matsuzawa K. Suzuki K. Tsuchihashi G.-i. ­Tetrahedron Lett. 1987; 28: 6339
  • 54 Crawley GC. Briggs MT. J. Org. Chem. 1995; 60: 4264
  • 55 Utimoto K. Horiie T. Tetrahedron Lett. 1982; 23: 237
  • 56 Jiang X. García-Fortanet J. De Brabander JK. J. Am. Chem. Soc. 2005; 127: 11254
    • 57a Han X. Floreancig PE. Org. Lett. 2012; 14: 3808
    • 57b Wan S. Wu F. Rech JC. Green ME. Balachandran R. Horne WS. Day BW. Floreancig PE. J. Am. Chem. Soc. 2011; 133: 16668
    • 57c Rech JC. Floreancig PE. Org. Lett. 2005; 7: 5175
  • 58 Terada M. Matsukawa S. Mikami K. J. Chem. Soc., Chem. Commun. 1993; 327
  • 59 Wan M. Meng Z. Lou H. Liu L. Angew. Chem. Int. Ed. 2014; 53: 13845
  • 60 Ferrier RJ. Overend WG. Ryan AE. J. Chem. Soc. 1962; 3667
  • 61 Danishefsky S. Kerwin JF. Jr. J. Org. Chem. 1982; 47: 3803
  • 62 Danishefsky SJ. Selnick HG. Zelle RE. DeNinno MP. J. Am. Chem. Soc. 1988; 110: 4368
  • 63 Williams DR. Mi L. Mullins RJ. Stites RE. Tetrahedron Lett. 2002; 43: 4841
    • 64a Ishihara K. Mori A. Yamamoto H. Tetrahedron Lett. 1987; 28: 6613
    • 64b Ishihara K. Mori A. Yamamoto H. Tetrahedron 1990; 46: 4595
  • 65 Crimmins MT. Siliphaivanh P. Org. Lett. 2003; 5: 4641
  • 66 Vakalopoulos A. Hoffmann HM. R. Org. Lett. 2001; 3: 177
  • 67 Schneider C. Schuffenhauer A. Eur. J. Org. Chem. 2000; 73
  • 68 Bates RW. Palani K. Tetrahedron Lett. 2008; 49: 2832
  • 69 Hiebel M.-A. Pelotier B. Lhoste P. Piva O. Synlett 2008; 1202
  • 70 Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848
  • 71 Ermanis K. Hsiao Y.-T. Kaya U. Jeuken A. Clarke PA. Chem. Sci. 2017; 8: 482
  • 72 Lee H. Kim KW. Park J. Kim H. Kim S. Kim D. Hu X. Yang W. Hong J. Angew. Chem. Int. Ed. 2008; 47: 4200
  • 73 Byeon SR. Park H. Kim H. Hong J. Org. Lett. 2011; 13: 5816
  • 74 Hilli F. White JM. Rizzacasa MA. Org. Lett. 2004; 6: 1289
  • 75 Goodwin TE. Crowder CM. White RB. Swanson JS. Evans FE. Meyer WL. J. Org. Chem. 1983; 48: 376
  • 76 Goodwin TE. Rothman NM. Salazar KL. Sorrels SL. Evans FE. J. Org. Chem. 1992; 57: 2469
  • 77 Clarke PA. Nasir NM. Sellars PB. Peter AM. Lawson CA. Burroughs JL. Org. Biomol. Chem. 2016; 14: 6840
  • 78 Ohmori K. Suzuki T. Miyazawa K. Nishiyama S. Yamamura S. Tetrahedron Lett. 1993; 34: 4981
  • 79 Bhattacharjee A. De Brabander JK. Tetrahedron Lett. 2000; 41: 8069
  • 80 Ramnauth J. Poulin O. Bratovanov SS. Rakhit S. Maddaford SP. Org. Lett. 2001; 3: 2571
  • 81 Kumaraswamy G. Ramakrishna G. Naresh P. Jagadeesh B. Sridhar B. J. Org. Chem. 2009; 74: 8468
  • 82 Edwards HJ. Goggins S. Frost CG. Molecules 2015; 20: 6153
  • 83 Anada M. Washio T. Watanabe Y. Takeda K. Hashimoto S. Eur. J. Org. Chem. 2010; 6850
  • 84 Schmidt B. Chem. Commun. 2003; 1656
  • 85 Schmidt B. Hölter F. Chem. Eur. J. 2009; 15: 11948
  • 86 Schmidt B. Hölter F. Kelling A. Schilde U. J. Org. Chem. 2011; 76: 3357
  • 87 Li Z. Ip FC. F. Ip NY. Tong R. Chem. Eur. J. 2015; 21: 11152
  • 88 Li Z. Tong R. Synthesis 2016; 48: 1630
  • 89 Li Z. Tong R. J. Org. Chem. 2017; 82: 1127
    • 90a Li Z. Tong R. J. Org. Chem. 2016; 81: 4847
    • 90b Zhu L. Song L. Tong R. Org. Lett. 2012; 14: 5892
  • 91 Li Z. Leung T.-F. Tong R. Chem. Commun. 2014; 50: 10990
  • 92 Uenishi J. i. Ohmi M. Ueda A. Tetrahedron: Asymmetry 2005; 16: 1299
  • 93 Kawai N. Lagrange J.-M. Ohmi M. Uenishi J. i. J. Org. Chem. 2006; 71: 4530
  • 94 Kawai N. Hande SM. Uenishi J. i. Tetrahedron 2007; 63: 9049
  • 95 Uenishi J. i. Ohmi M. Angew. Chem. Int. Ed. 2005; 44: 2756
  • 96 Palimkar SS. Uenishi J. i. Ii H. J. Org. Chem. 2012; 77: 388
  • 97 Tino J. Lewis M. Kishi Y. Heterocycles 1987; 25: 97
  • 98 Williams DR. Kiryanov AA. Emde U. Clark MP. Berliner MA. Reeves JT. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12058
  • 99 Williams DR. Plummer SV. Patnaik S. Tetrahedron 2011; 67: 5083
  • 100 Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
  • 101 Nicolaou KC. Papahatjis DP. Claremon DA. Magolda RL. Dolle RE. J. Org. Chem. 1985; 50: 1440
  • 102 Cywin CL. Kallmerten J. Tetrahedron Lett. 1993; 34: 1103
    • 103a Smith AB. III. Jurica JA. Walsh SP. Org. Lett. 2008; 10: 5625
    • 103b An C. Jurica JA. Walsh SP. Hoye AT. Smith AB. III. J. Org. Chem. 2013; 78: 4278
    • 104a Watanabe T. Imaizumi T. Chinen T. Nagumo Y. Shibuya M. Usui T. Kanoh N. Iwabuchi Y. Org. Lett. 2010; 12: 1040
    • 104b Uesugi S.-i. Watanabe T. Imaizumi T. Ota Y. Yoshida K. Ebisu H. Chinen T. Nagumo Y. Shibuya M. Kanoh N. Usui T. Iwabuchi Y. J. Org. Chem. 2015; 80: 12333
  • 105 McDonald FE. Wei X. Org. Lett. 2002; 4: 593
  • 106 Kanemoto M. Murata M. Oishi T. J. Org. Chem. 2009; 74: 8810
  • 107 Nicolaou K. Seitz S. Sipio W. Blount J. J. Am. Chem. Soc. 1979; 101: 3884
  • 108 Shangguan N. Kiren S. Williams LJ. Org. Lett. 2007; 9: 1093
  • 109 Nakata T. Schmid G. Vranesic B. Okigawa M. Smith-Palmer T. Kishi Y. J. Am. Chem. Soc. 1978; 100: 2933
  • 110 Nicolaou K. Magolda R. Sipio W. Barnette W. Lysenko Z. Joullie M. J. Am. Chem. Soc. 1980; 102: 3784
  • 111 Fettes A. Carreira EM. J. Org. Chem. 2003; 68: 9274
  • 112 Kühnert SM. Maier ME. Org. Lett. 2002; 4: 643
  • 113 Jung Y.-H. Kim Y.-J. Lee J. Tae J. Chem. Asian. J. 2007; 2: 656
    • 114a Su Q. Panek JS. J. Am. Chem. Soc. 2004; 126: 2425
    • 114b Su Q. Panek JS. Angew. Chem. Int. Ed. 2005; 44: 1223
  • 115 Hu X.-H. Liu F. Loh T.-P. Org. Lett. 2009; 11: 1741
  • 116 Parida BB. Lysenko IL. Cha JK. Org. Lett. 2012; 14: 6258
  • 117 Lee HG. Lysenko IL. Cha JK. Angew. Chem. Int. Ed. 2007; 46: 3326
  • 118 Mulzer J. Meyer F. Buschmann J. Luger P. Tetrahedron Lett. 1995; 36: 3503
    • 119a McDonald FE. Towne TB. J. Am. Chem. Soc. 1994; 116: 7921
    • 119b Brown RC. Kocienski PJ. Synlett 1994; 415
    • 119c Carlsen PH. J. Katsuki T. Martin VS. Sharpless KB. J. Org. Chem. 1981; 46: 3936
    • 119d Sinha SC. Sinha A. Yazbak A. Keinan E. J. Org. Chem. 1996; 61: 7640
    • 119e Kennedy RM. Tang S. Tetrahedron Lett. 1992; 33: 3729
  • 120 McDonald FE. Singhi AD. Tetrahedron Lett. 1997; 38: 7683
  • 121 Piccialli V. Tetrahedron Lett. 2000; 41: 3731
  • 122 Kim J. Jeong W. Rhee YH. Org. Lett. 2017; 19: 242
    • 123a Rainier JD. Synthesis of Natural Products Containing Medium-Size Oxygen Heterocycles by Ring-Closing Alkene Metathesis. In Metathesis in Natural Product Synthesis. Cossy J. Arseniyadis S. Meyer C. Wiley-VCH; Weinheim: 2010: 87-127
    • 123b Majumdar KC. RSC Adv. 2011; 1: 1152
  • 124 Crimmins MT. Diaz CJ. Emmitte KA. Heterocycles 2004; 62: 179
  • 125 Burke SD. Armistead DM. Fevig JM. Tetrahedron Lett. 1985; 26: 1163
    • 126a Marmsäter FP. Vanecko JA. West FG. Tetrahedron 2002; 58: 2027
    • 126b Marmsäter FP. West FG. J. Am. Chem. Soc. 2001; 123: 5144
  • 127 Wang H. Shuhler BJ. Xian M. Synlett 2008; 2651