Synthesis 2017; 49(01): 29-41
DOI: 10.1055/s-0036-1588904
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Substituted 1,2,3-Triazoles via Metal-Free Click Cycloaddition Reactions and Alternative Cyclization Methods

Hitesh B. Jalani
,
Aysun Çapcı Karagöz
,
Svetlana B. Tsogoeva*
Further Information

Publication History

Received: 02 October 2016

Accepted after revision: 04 October 2016

Publication Date:
07 November 2016 (online)


Dedicated to Professor Dieter Enders on the occasion of his 70th birthday

Abstract

Click chemistry is one of the most efficient and widely used methodologies for selective C–N bond forming reactions, encompassing the synthesis of 1,2,3-triazoles, and it has been continued to be of great interest in synthetic and medicinal chemistry since its discovery. Diversely substituted 1,2,3-triazoles synthesized by classical Huisgen 1,3-dipolar cycloaddition of azides with alkynes have a broad spectrum of biological properties and they are widely accessed using transition-metal catalysts, such as copper- and ruthenium-catalyzed azide-alkyne cycloaddition [MAAC] reactions. In contrast, the development of organocatalyzed click chemistry has recently emerged as one of the most important alternative strategies to transition-metal-mediated reactions, because of its sustainability, environmentally benign processes and, moreover the absence of metals toxic to biological systems including living cells and biomolecules such as DNA. The focus of this review is on the recent advances in the organocatalytic click chemistry of enamine and enolate-mediated [3+2] cycloadditions and alternative metal-free cyclization reactions for the preparation of diversely functionalized 1,2,3-triazoles. The scope and limitations of these methods and also their applications for the synthesis of bioactive hybrid molecules are discussed.

1 Introduction

2 Enamine-Mediated Triazole Synthesis

3 Enolate-Mediated Triazole Synthesis

4 Alternative Metal-Free Triazole Synthesis

5 Applications to the Synthesis of Bioactive Compounds

6 Summary

 
  • References

  • 1 Current address: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
    • 2a Baures PW. Org. Lett. 1999; 1: 249
    • 2b Kallander LS, Thompson SK. WO 2001078723, 2001
    • 2c Melo JO. F, Donnici CL, Augusti R, Lopes MT. P, Mikhailovskii AG. Heterocycl. Commun. 2003; 9: 235
    • 2d Tome AC. Science of Synthesis . Vol. 13. Thieme Verlag; Stuttgart: 2004: 415
    • 2e Kallander LS, Lu Q, Chen W, Tomaszek T, Yang G, Tew D, Meek TD, Hofmann GA, Schulz-Pritchard CK, Smith WW, Janson CA, Ryan MD, Zhang GF, Johanson KO, Kirkpatrick RB, Ho TF, Fisher PW, Mattern MR, Johnson RK, Hansbury MJ, Winkler JD, Ward KW, Veber DF, Thompson SK. J. Med. Chem. 2005; 48: 5644
    • 2f Palmer LM, Janson CA, Smith WW. WO 2005016237, 2005
    • 2g Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
    • 2h Special edition devoted to click chemistry: Chem. Asian J. 2011; 6: 2565-2847
    • 2i Lauria A, Delisi R, Mingoia F, Terenzi A, Martorana A, Barone G, Almerico AM. Eur. J. Org. Chem. 2014; 3289
    • 2j Ramasastry SS. V. Angew. Chem. Int. Ed. 2014; 53: 14310
    • 2k John J, Thomas J, Dehaen W. Chem. Commun. 2015; 51: 10797
    • 2l Wan J.-P, Hu D, Liu Y, Sheng S. ChemCatChem 2015; 7: 901
    • 3a Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
    • 3b Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
  • 4 Huisgen R. Proc. Chem. Soc. 1961; 357
    • 5a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 5b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 6 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 7 Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
    • 8a Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 16793
    • 8b Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 8c Sletten EM, Bertozzi CR. Org. Lett. 2008; 10: 3097
    • 8d Plass T, Milles S, Koehler C, Schultz C, Lemke EA. Angew. Chem. Int. Ed. 2011; 50: 3878
  • 9 Stork G, Dowd SR. J. Am. Chem. Soc. 1963; 85: 2178
  • 10 Ramachary DB, Ramakumar K, Narayana V. Chem. Eur. J. 2008; 14: 9143
  • 11 Danence LJ. T, Gao Y, Li M, Huang Y, Wang J. Chem. Eur. J. 2011; 17: 3584
  • 12 Belkheira M, Abed DE, Pons J.-M, Bressy C. Chem. Eur. J. 2011; 17: 12917
  • 13 Yeung DK. J, Gao T, Huang J, Sun S, Guo H, Wang J. Green Chem. 2013; 15: 2384
  • 14 Ramachary DB, Shashank AB. Chem. Eur. J. 2013; 19: 13175
  • 15 Li W, Jia Q, Du Z, Wang J. Chem. Commun. 2013; 49: 10187
  • 16 Li W, Du Z, Huang J, Jia Q, Zhang K, Wang J. Green Chem. 2014; 16: 3003
  • 17 Wan J.-P, Cao S, Liu Y. J. Org. Chem. 2015; 80: 9028
  • 18 Saravia MT, Costa GP, Seus N, Schumacher RF, Perin G, Paixao MW, Luque R, Alves D. Org. Lett. 2015; 17: 6206
  • 19 Thomas J, Jana S, John J, Liekens S, Dehaen W. Chem. Commun. 2016; 52: 2885
  • 20 Kamalraj VR, Sentil S, Kannan P. J. Mol. Struct. 2008; 892: 210
  • 21 Cheng G, Zeng X, Shen J, Wang X, Cui X. Angew. Chem. Int. Ed. 2013; 52: 13265
  • 22 Ramachary DB, Shashank AB, Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420
  • 23 Ali A, Corrêa AG, Alves D, Zukerman-Schpector J, Westermann B, Ferreira MA. B, Paixão MW. Chem. Commun. 2014; 50: 11926
  • 24 Li W, Wang J. Angew. Chem. Int. Ed. 2014; 53: 14186
  • 25 Shashank AB, Karthik S, Madhavachary R, Ramachary DB. Chem. Eur. J. 2014; 20: 16877
  • 26 Ramachary DB, Krishna PM, Gujral J, Reddy GS. Chem. Eur. J. 2015; 21: 16775
  • 27 Grassivaro N, Rossi E, Stradi R. Synthesis 1986; 1010
  • 28 Sakai K, Hida N, Kondo K. Bull. Chem. Soc. Jpn. 1986; 59: 179
  • 29 Ahsanullah, Schmieder P, Kuhne R, Rademann J. Angew. Chem. Int. Ed. 2009; 48: 5042
  • 30 Berkel S, Brauch S, Gabriel L, Henze M, Stark S, Vasilev D, Wessjohann LA, Abbas M, Westermann B. Angew. Chem. Int. Ed. 2012; 51: 5343
  • 31 Thomas J, John J, Parekh N, Dehaen W. Angew. Chem. Int. Ed. 2014; 53: 10155
  • 32 Bai H.-W, Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2015; 17: 2898
  • 33 Ahamad S, Kant R, Mohanan K. Org. Lett. 2016; 18: 280
  • 34 Zhou X, Xu X, Liu K, Gao H, Wang W, Li W. Eur. J. Org. Chem. 2016; 1886
  • 35 Nagarajan R, Jayshankaran J, Emmanuvel L. Tetrahedron. Lett. 2016; 57: 2612
  • 36 Shu H, Izenwasser S, Wade D, Stevens ED, Trudell ML. Bioorg. Med. Chem. Lett. 2009; 19: 891
  • 37 Wang L, Peng S, Danence LJ. T, Gao Y, Wang J. Chem. Eur. J. 2012; 18: 6088
  • 38 Kim S, Cho M, Lee T, Lee S, Min H.-Y, Lee SK. Bioorg. Med. Chem. Lett. 2007; 17: 4584
  • 39 Li W, Zhou X, Luan Y, Wang J. RSC Adv. 2015; 5: 88816
  • 40 Saraiva MT, Krüger R, Baldinotti RS. M, Lenardão EJ, Luchese C, Savegnago L, Wilhelm EA, Alves D. J. Braz. Chem. Soc. 2016; 27: 41