Synthesis 2017; 49(17): 3925-3930
DOI: 10.1055/s-0036-1588986
special topic
© Georg Thieme Verlag Stuttgart · New York

Large-Scale Cobalt-Catalyzed Cross-Couplings of Functionalized Bench-Stable Arylzinc Pivalates with (Hetero)Aryl and Alkenyl Halides­

Maximilian S. Hofmayer
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Jeffrey M. Hammann
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Ferdinand H. Lutter
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus F, 81377 München, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 13 February 2017

Accepted after revision: 09 March 2017

Publication Date:
18 April 2017 (online)


Published as part of the Special Topic Cobalt in Organic Synthesis

Abstract

A robust and scalable CoCl2-catalyzed cross-coupling between functionalized arylzinc pivalates and various electron-poor (hetero)aryl and alkenyl halides is reported.

Supporting Information

 
  • References

    • 1a Miyaura N. Cross-Coupling Reactions. A Practical Guide. Springer; Berlin: 2002
    • 1b Metal-Catalyzed Cross-Coupling Reactions. Diederich F. de Meijere A. Wiley-VCH; Weinheim: 2004
    • 1c Modern Drug Synthesis. Li JJ. Johnson DS. Wiley-VCH; Weinheim: 2010
    • 1d Organotransition Metal Chemistry . Hartwig JF. University Science Books; Sausalito: 2010
    • 2a Noguchi H. Hojo K. Suginome M. J. Am. Chem. Soc. 2007; 129: 758
    • 2b Lee SJ. Gray KC. Paek JS. Burke MD. J. Am. Chem. Soc. 2008; 130: 466
    • 2c Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
    • 3a Suzuki A. Pure Appl. Chem. 1985; 57: 1749
    • 3b Miyaura N. Yamada K. Suginome H. Suzuki A. J. Am. Chem. Soc. 1985; 107: 972
    • 3c Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 4a Molander GA. Biolatto B. J. Org. Chem. 2003; 68: 4302
    • 4b Molander GA. Canturk B. Angew. Chem. Int. Ed. 2009; 48: 9240
    • 5a Wender PA. Hilinski MK. Mayweg AV. W. Org. Lett. 2005; 7: 79
    • 5b Campbell MG. Ritter T. Org. Process Res. Dev. 2014; 18: 474
  • 6 O’Donovan MR. Mee CD. Fenner S. Teasdale A. Phillips DH. Mutat. Res. 2011; 724: 1
  • 7 Haas D. Hammann JM. Greiner R. Knochel P. ACS Catal. 2016; 6: 1540
  • 8 NMR experiments and crystallographic data showed that the structure of these zinc reagents is RZnX·Mg(OPiv)2·LiCl. However, for the sake of clarity, we have named these reagents RZnOPiv, see: Hernán-Gómez A. Herd E. Hevia E. Kennedy AR. Knochel P. Koszinowski K. Manolikakes SM. Mulvey RE. Schnegelsberg C. Angew. Chem. Int. Ed. 2014; 53: 2706
    • 9a Bernhardt S. Manolikakes G. Kunz T. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9205
    • 9b Stathakis CI. Bernhardt S. Quint V. Knochel P. Angew. Chem. Int. Ed. 2012; 51: 9428
    • 9c Colombe JR. Bernhardt S. Stathakis C. Buchwald SL. Knochel P. Org. Lett. 2013; 15: 5754
    • 9d Stathakis CI. Manolikakes SM. Knochel P. Org. Lett. 2013; 15: 1302
    • 9e Manolikakes SM. Ellwart M. Stathakis CI. Knochel P. Chem. Eur. J. 2014; 20: 12289
  • 10 World market prices: Pd ca. 22700 €/kg, Co ca. 35 €/kg; http://www.infomine.com/; retrieved February 2017.
    • 11a Handbook on the Toxicology of Metals . Friberg L. Nordberg GF. Vouk VB. Elsevier; Amsterdam: 1986
    • 11b Hughes MN. Comprehensive Coordination Chemistry . Vol. 6. Wilkinson G. Gillard RD. McCleverty JA. Pergamon; Oxford: 1987: 643-648
    • 11c Nickel and the Skin: Absorption, Immunology, Epidemiology, and Metallurgy . Hostynek JJ. Maibach HI. CRC; Boca Raton: 2002
  • 12 Prices retrieved from Alfa Aesar; February 2017.
    • 13a Egorova KS. Ananikov VP. Angew. Chem. Int. Ed. 2016; 55: 12150
    • 13b Moore W. Hysell D. Hall L. Campbell K. Stara J. Environ. Health Perspect. 1975; 10: 63

      For selected examples, see:
    • 14a Xu W. Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 12731
    • 14b Yan J. Yoshikai N. ACS Catal. 2016; 6: 3738
    • 14c Wang H. Moselage M. Gonzalez MJ. Ackermann L. ACS Catal. 2016; 6: 2705
    • 14d Zell D. Bu Q. Feldt M. Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7408
    • 14e Nicolas L. Izquierdo E. Angibaud P. Stansfield I. Meerpoel L. Reymond S. Cossy J. J. Org. Chem. 2013; 78: 11807
    • 14f Barre B. Gonnard L. Campagne R. Reymond S. Marin J. Ciapetti P. Brellier M. Guerinot A. Cossy J. Org. Lett. 2014; 16: 6160
    • 14g Gonnard L. Guerinot A. Cossy J. Chem. Eur. J. 2015; 21: 12797
    • 14h Corpet M. Bai X.-Z. Gosmini C. Adv. Synth. Catal. 2014; 356: 2937
    • 14i Cai Y. Qian X. Gosmini C. Adv. Synth. Catal. 2016; 358: 2427
    • 14j Pal S. Chowdhury S. Rozwadowski E. Auffrant A. Gosmini C. Adv. Synth. Catal. 2016; 358: 2431
    • 14k Cahiez G. Chaboche C. Duplais C. Giulliani A. Moyeux A. Adv. Synth. Catal. 2008; 350: 1484
    • 14l Cahiez G. Chaboche C. Duplais C. Moyeux A. Org. Lett. 2009; 11: 277
    • 14m Kobayashi T. Ohmiya H. Yorimitsu H. Oshima K. J. Am. Chem. Soc. 2008; 130: 11276
    • 14n Murakami K. Yorimitsu H. Oshima K. Chem. Eur. J. 2010; 16: 7688
    • 14o Gensch T. Klauck FJ. R. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
    • 14p Lerchen A. Vásquez-Céspedes S. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
  • 15 Hammann JM. Lutter FH. Haas D. Knochel P. Angew. Chem. Int. Ed. 2017; 56: 1082