Synthesis 2017; 49(13): 2933-2938
DOI: 10.1055/s-0036-1588991
paper
© Georg Thieme Verlag Stuttgart · New York

Preparation of Nonradioactive Standards and a Precursor for a Hypoxia 18F PET Tracer Derived from 1-(β-d-Galactopyranosyl)-2-nitroimidazole

Anna Schweifer †
a  Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
,
Petra Malová Križková
a  Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
,
Kurt Mereiter
b  Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria   Email: friedrich.hammerschmidt@univie.ac.at
,
Friedrich Hammerschmidt*
a  Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
› Author Affiliations
Further Information

Publication History

Received: 30 January 2017

Accepted after revision: 10 March 2017

Publication Date:
07 April 2017 (online)


Deceased.

Abstract

Acetyl-protected 1-(β-d-galactopyranosyl)-2-nitroimidazole was converted to a potential precursor for a fluorine-18 labeled hypoxia tumor marker. Two nonradioactive standards, the 6′-deoxy-6′-fluorogalactosyl and the 4′-deoxy-4′-fluoroglucosyl analogue were also prepared. These 2-nitroimidazole nucleosides were prepared by a modified Vorbrüggen coupling.

Supporting Information

 
  • References

    • 1a Edwards DI. J. Antimicrob. Chemother. 1993; 31: 9
    • 1b Nunn A. Linder K. Strauss HW. Eur. J. Nucl. Med. 1995; 22: 265
    • 1c Hodgkiss RJ. Anticancer Drug Des. 1998; 13: 687
  • 2 Masaki Y. Shimizu Y. Yoshioka T. Tanaka Y. Nishijima K-i. Zhao S. Higashino K. Sakamoto S. Numata Y. Yamaguchi Y. Tamaki N. Kuge Y. Nat. Sci. Rep. 2015; 5: 16802
  • 3 Rasey JS. Grunbaum Z. Magee S. Nelson NJ. Olive PL. Durand RE. Krohn KA. Radiat. Res. 1987; 111: 292
  • 4 Reisch G. Ehrlichmann W. Bieg C. Solbach C. Kumar P. Wiebe LI. Machulla H.-J. Appl. Radiat. Isot. 2005; 62: 897
  • 5 Schweifer A. Maier F. Ehrlichmann W. Laparter D. Kneilling M. Pichler BJ. Hammerschmidt F. Reischl G. Mol. Med. Biol. 2016; 43: 759
  • 6 Wanek T. Kreis K. Križková P. Schweifer A. Denk C. Stanek J. Mairinger S. Filip T. Sauberer M. Edelhofer P. Traxl A. Muchitsch VE. Mereiter K. Hammerschmidt F. Cass CE. Damaraju VL. Langer O. Kuntner C. Bioorg. Med. Chem. 2016; 24: 5326
  • 7 Schneider RF. Engelhardt EL. Stobbe CC. Fenning MC. Chapman JD. J. Labelled Compd. Radiopharm. 1997; 39: 541
  • 8 Patt M. Sorger D. Scheunemann M. Stöcklin G. Appl. Radiat. Isot. 2002; 5: 705
  • 9 Suehiro M. Burgman P. Carlin S. Burke S. Yang G. Ouerfelli O. Oehler-Janne C. O’Donoghue J. Ling C. Humm J. Nucl. Med. Biol. 2009; 36: 477
  • 10 Hay MP. Lee HH. Wilson WR. Roberts PB. Denny WA. J. Med. Chem. 1995; 38: 1928
  • 11 Schweifer A. Hammerschmidt F. J. Org. Chem. 2011; 76: 8159
  • 12 Burkhart MD. Vincent SP. Duffels A. Murray BW. Ley SV. Wong C.-H. Bioorg. Med. Chem. 2000; 8: 1937
  • 13 Lowary TL. Hindsgaul O. Carbohydr. Res. 1993; 249: 163
  • 14 Reist EJ. Spencer RR. Calkins DF. Baker BR. Goodman L. J. Org. Chem. 1965; 30: 2312
  • 15 Card PJ. J. Org. Chem. 1983; 48: 393
  • 16 Withers SG. MacLennan DJ. Street IP. Carbohydr. Res. 1986; 154: 127
  • 17 Mikenda W. Vib. Spectrosc. 1992; 3: 327