Synthesis 2017; 49(18): 4151-4162
DOI: 10.1055/s-0036-1589017
special topic
© Georg Thieme Verlag Stuttgart · New York

Gold(I)-Catalyzed Cascade: Synthesis of 2,5-Disubstituted Pyrroles from N-Sulfonyl-2-(1-ethoxypropargyl)azetidines through Cyclization/Nucleophilic Substitution/Elimination

Romain Pertschi
Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France   Email: ablanc@unistra.fr   Email: ppale@unistra.fr
,
Solène Miaskiewicz
Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France   Email: ablanc@unistra.fr   Email: ppale@unistra.fr
,
Jean-Marc Weibel
Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France   Email: ablanc@unistra.fr   Email: ppale@unistra.fr
,
Patrick Pale*
Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France   Email: ablanc@unistra.fr   Email: ppale@unistra.fr
,
Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France   Email: ablanc@unistra.fr   Email: ppale@unistra.fr
› Author Affiliations
Further Information

Publication History

Received: 13 March 2017

Accepted after revision: 04 April 2017

Publication Date:
09 May 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

N-Sulfonyl-2-(1-ethoxypropargyl)azetidine derivatives undergo a gold-catalyzed rearrangement in the presence of various alcohols furnishing the 2,5-disubstituted pyrroles in excellent yields (11 examples, 63–86%). Iodide or deuterium trappings of organogold intermediate as well as kinetic study confirmed the postulated cyclization/nucleophilic substitution/elimination mechanism.

Supporting Information

 
  • References

  • 1 Bergman J. Janosik T. In Modern Heterocyclic Chemistry . Alvarez-Julia J. Vaquero JJ. Barluenga J. Wiley-VCH; Weinheim: 2011: 269
  • 2 Gupton JT. Top. Heterocycl. Chem. 2006; 2: 53
  • 3 Di Santo R. Nat. Prod. Rep. 2010; 27: 1084

    • See for example:
    • 4a Edwards TG. Koeller KJ. Slomczynska U. Fok K. Helmus M. Bashkin JK. Fisher C. Antiviral Res. 2011; 91: 177
    • 4b Keifer PA. Schwartz RE. Koker ME. S. Hughes RG. Rittschof D. Rinehart KL. J. Org. Chem. 1991; 56: 2965

      See, for example:
    • 5a Raju R. Piggott AM. Barrientos Diaz LX. Khalil Z. Capon RJ. Org. Lett. 2010; 12: 5158
    • 5b Richards JJ. Reed CS. Melander C. Bioorg. Med. Chem. Lett. 2008; 18: 4325
  • 6 Kim SB. Chang BY. Jo YH. Lee SH. Han S.-B. Hwang BY. Kim SY. Lee MK. J. Ethnopharm. 2013; 145: 393
  • 7 Da Silva FR. Tessis AC. Ferreira PF. Rangel LP. Garcia-Gomes AS. Pereira FR. Berlinck RG. S. Muricy G. Ferreira-Pereira A. J. Nat. Prod. 2011; 74: 279
  • 8 Koyama M. Kodama Y. Tsuruoka T. Ezaki N. Niwa T. Inouye S. J. Antibiot. 1981; 34: 1569
  • 9 Youn UJ. Kil Y-S. Nam J-W. Lee YJ. Kim J. Lee D. Lee J-H. Seo E-K. Helv. Chim. Acta 2013; 96: 1482
    • 11a Paal C. Ber. Dtsch. Chem. Ges. 1884; 17: 2756
    • 11b Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 1635
  • 12 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
  • 13 Estevez V. Villacampa M. Menendez JC. Chem. Soc. Rev. 2014; 43: 4633
  • 14 Gulevich AV. Dudnik AS. Cherniak N. Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 15a Rudolph M. Hashmi AS. K. Chem. Commun. 2011; 47: 6536
    • 15b Yang W. Hashmi AS. K. Chem. Soc. Rev. 2014; 43: 2941
    • 15c Pflaesterer D. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
    • 16a Egi M. Azechi K. Akai S. Org. Lett. 2009; 11: 5002
    • 16b Aponick A. Li C.-Y. Malinge J. Marques EF. Org. Lett. 2009; 11: 4624
    • 16c Minkler SR. K. Isley NA. Lippincott DJ. Krause N. Lipshutz BH. Org. Lett. 2014; 16: 724
    • 17a Ueda H. Yamaguchi M. Kameya H. Sugimoto K. Tokuyama H. Org. Lett. 2014; 16: 4948
    • 17b Li X. Chen M. Xie X. Sun N. Li S. Liu Y. Org. Lett. 2015; 17: 2984
  • 18 Gorin DJ. Davis NR. Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
  • 19 Benedetti E. Lemière G. Chapellet L.-L. Penoni A. Palmisano G. Malacria M. Goddard J.-P. Fensterbank L. Org. Lett. 2010; 12: 439
  • 20 Binder JT. Kirsch SF. Org. Lett. 2006; 8: 2151
    • 21a Davies PW. Martin N. Org. Lett. 2009; 11: 2293
    • 21b Hashmi AS. K. Sinha P. Adv. Synth. Catal. 2004; 346: 432
    • 22a Blanc A. Tenbrink K. Weibel J.-M. Pale P. J. Org. Chem. 2009; 74: 4366
    • 22b Blanc A. Tenbrink K. Weibel J.-M. Pale P. J. Org. Chem. 2009; 74: 5342
  • 23 Saito A. Konishi O. Hanzawa Y. Org. Lett. 2010; 12: 372
  • 24 Wu Y. Zhu L. Yu Y. Luo X. Huang X. J. Org. Chem. 2015; 80: 11407
  • 25 Kramer S. Madsen JL. H. Rottländer M. Skrydstrup T. Org. Lett. 2010; 12: 2758
    • 26a Miaskiewicz S. Gaillard B. Kern N. Weibel J.-M. Pale P. Blanc A. Angew. Chem. Int. Ed. 2016; 55: 9088
    • 26b Miaskiewicz S. Weibel J.-M. Pale P. Blanc A. Org. Lett. 2016; 18: 844
  • 27 Blanc A. Alix A. Weibel J.-M. Pale P. Eur. J. Org. Chem. 2010; 1644
  • 28 Kern N. Felten A-S. Weibel J.-M. Pale P. Blanc A. Org. Lett. 2014; 16: 6104
    • 29a Engel DA. Dudley GB. Org. Biomol. Chem. 2009; 7: 4149
    • 29b Ramon RS. Marion N. Nolan SP. Tetrahedron 2009; 65: 1767
    • 29c Ramon RS. Gaillard S. Slawin AM. Z. Porta A. D’Alfonso A. Zanoni G. Nolan SP. Organometallics 2010; 29: 3665
    • 29d Pennell MN. Unthank MG. Turner P. Sheppard TD. J. Org. Chem. 2011; 76: 1479
    • 29e Hansmann MM. Hashmi AS. K. Lautens M. Org. Lett. 2013; 15: 3226
    • 29f Yu Y. Yang W. Pflaesterer D. Hashmi AS. K. Angew. Chem. Int. Ed. 2014; 53: 1144
    • 29g Yang Y. Qin A. Zhao K. Wang D. Shi X. Adv. Synth. Catal. 2016; 358: 1433
    • 29h Pennell MN. Kyle MP. Gibson SM. Male L. Turner PG. Grainger RS. Sheppard TD. Adv. Synth. Catal. 2016; 358: 1519
    • 29i Yang Y. Shen Y. Wang X. Zhang Y. Wang D. Shi X. Tetrahedron Lett. 2016; 57: 2280
  • 30 Hashmi AS. K. Angew. Chem. Int. Ed. 2010; 49: 5232
    • 31a Hashmi AS. K. Ramamurthi TD. Rominger F. J. Organomet. Chem. 2009; 694: 592
    • 31b Hashmi AS. K. Ramamurthi TD. Todd MH. Tsang AS.-K. Graf K. Aust. J. Chem. 2010; 63: 1619
  • 32 Zhdanko A. Maier ME. Angew. Chem. Int. Ed. 2014; 53: 7760
  • 33 Zero-order, with k = 0.0037 mol·L–1·s–1, or first order, with k = 1.1 s–1 for the minor diastereoisomer; pseudo-first order, with k = 1.9 s–1 for the major diastereoisomer.
  • 34 Preliminary modeling (Spartan 16) showed that one C diastereoisomer exhibits the leaving C–OEt bond coplanar with the adjacent π-enamine system, while the other does not (see the Supporting Information).
  • 35 Mézailles N. Ricard L. Gagosz F. Org. Lett. 2005; 7: 4133