Synthesis 2017; 49(11): 2297-2336
DOI: 10.1055/s-0036-1589487
review
© Georg Thieme Verlag Stuttgart · New York

Enolizable Alkylidene Heterocyclic and Carbocyclic Carbonyl Systems­: Valuable Vinylogous Donor Substrates in Synthesis

Lucia Battistini
a   Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy   Email: andrea.sartori@unipr.it   Email: franca.zanardi@unipr.it
,
Claudio Curti
a   Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy   Email: andrea.sartori@unipr.it   Email: franca.zanardi@unipr.it
,
Gloria Rassu
b   Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Li Punti Sassari, Italy
,
Andrea Sartori*
a   Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy   Email: andrea.sartori@unipr.it   Email: franca.zanardi@unipr.it
,
Franca Zanardi*
a   Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy   Email: andrea.sartori@unipr.it   Email: franca.zanardi@unipr.it
› Author Affiliations
Further Information

Publication History

Received: 25 November 2016

Accepted after revision: 24 January 2017

Publication Date:
06 April 2017 (online)


To the memory of Prof. Giovanni Casiraghi, our mentor, with deep gratitude (1939–2016)

Abstract

Controlled vinylogous carbon–carbon bond-forming reactions are useful options for providing the selective remote functionalization of conjugated carbonyl substrates. Remotely enolizable alkylidene heterocyclic and carbocyclic carbonyl compounds are pro-nucleophilic substrates that may be engaged in highly valuable chemical transformations. This review emphasizes the merits of these recently discovered vinylogous donors in the chemo-, regio- and stereoselective synthesis of many functionality-rich products.

1 Introduction

2 Alkylidene Oxindoles

3 Alkylidene Pyrazolinones

4 Alkylidene Furanones

5 Alkylidene Azlactones

6 Cycloalkylidene Carbonyl Compounds

7 Alkylidene Indenones

8 Cycloalkylidene Malononitriles

9 Conclusion

 
  • References

    • 1a Breslow R. Acc. Chem. Res. 1980; 13: 170
    • 1b Clayden J. Chem. Soc. Rev. 2009; 38: 817
    • 1c Franzoni I. Mazet C. Org. Biomol. Chem. 2014; 12: 233

      For leading references on vinylogy, see:
    • 2a Fuson RC. Chem. Rev. 1935; 16: 1
    • 2b Casiraghi G. Battistini L. Curti C. Rassu G. Zanardi F. Chem. Rev. 2011; 111: 3076
    • 2c Zanardi F. Rassu G. Battistini L. Curti C. Sartori A. Casiraghi G. In Targets in Heterocyclic Systems – Chemistry and Properties . Vol. 6. Attanasi OA. Spinelli D. Società Chimica Italiana; Rome: 2012: 56

      For focused review articles on vinylogy, see:
    • 3a Cui H.-L. Chen Y.-C. Chem. Commun. 2009; 4479
    • 3b Pansare SV. Paul EK. Chem. Eur. J. 2011; 17: 8770
    • 3c Bisai V. Synthesis 2012; 44: 1453
    • 3d Kumar I. Ramaraju P. Mir NA. Org. Biomol. Chem. 2013; 11: 709
    • 3e Jurberg ID. Chatterjee I. Tannert R. Melchiorre P. Chem. Commun. 2013; 49: 4869
    • 3f Jusseau X. Chabaud L. Guillou C. Tetrahedron 2014; 70: 2595
    • 3g Jiang H. Albrecht Ł. Jørgensen KA. Chem. Sci. 2013; 4: 2287
    • 3h Kalesse M. Cordes M. Symkenberg G. Lu H.-H. Nat. Prod. Rep. 2014; 31: 563
    • 3i Schneider C. Abels F. Org. Biomol. Chem. 2014; 12: 3531
    • 3j Uraguchi D. Ooi T. Top. Curr. Chem. 2015; 372: 55
    • 3k Hepburn HB. Dell’Amico L. Melchiorre P. Chem. Rec. 2016; 16: 1787
  • 4 We considered direct procedures those one-pot, single-step or multi-step processes which fail to permit isolation of the vinylogous donor.
    • 5a Ball-Jones NR. Badillo JJ. Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 5b Hong L. Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 5c Cheng D. Ishihara Y. tan B. Barbas III CF. RSC Adv. 2014; 4: 743
    • 5d Jang X. Liu L. Zhang P. Zhong Y. Wang R. Angew. Chem. Int. Ed. 2013; 52: 11329
    • 6a Segura JL. Martin N. Chem. Rev. 1999; 99: 3199
    • 6b Van De Water RW. Pettus TR. R. Tetrahedron 2002; 58: 5367
    • 6c Pathak TP. Sigman MS. J. Org. Chem. 2011; 76: 4527
    • 6d Caruana L. Fochi M. Bernardi L. Molecules 2015; 20: 11733
  • 7 Millemaggi A. Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
  • 8 Zhou L. Yang J.-S. Wu X. Zou J.-H. Xu X.-D. Tu G.-Z. Heterocycles 2005; 65: 1409
  • 9 Fatima I. Ahmad I. Nawaz SA. Malik A. Afza N. Luttfullah G. Choudhary MI. Heterocycles 2006; 68: 1421
    • 10a Sun L. Liang C. Shirazian S. Zhou Y. Miller T. Cui J. Fukuda JY. Chu JY. Nematalla A. Wang X. Chen H. Sistla A. Luu TC. Tang F. Wei J. Tang C. J. Med. Chem. 2003; 7: 1116
    • 10b Faivre S. Demetri G. Sargent W. Raymond E. Nature Rev. Drug Discovery 2007; 6: 734
    • 11a Carty TJ. Sweeney FJ. Griffiths RJ. Eskra JD. Ernest MJ. Pillar JS. Cheng JD. Loose LD. Joseph PA. Pazoles PP. Moore PF. Nagahisa A. Murase S. Kadin SB. Inflamm. Res. 1997; 46: 168
    • 11b Kumar PR. Goud PS. Raju S. Sarma MR. Reddy GO. Org. Process Res. Dev. 2001; 5: 61
    • 11c Porcs-Makkay M. Volk B. Kapiller-Dezsöfi R. Mezei T. Simig G. Monatsh. Chem. 2004; 135: 697
  • 12 Selvakumar K. Vaithiyanathan V. Shanmugam P. Chem. Commun. 2010; 46: 2826

    • For a couple of brilliant examples where similar ylides were generated in situ by isatin-derived MBH carbonates and used in subsequent [2+1] and [3+2] annulations; see:
    • 13a Wang K.-K. Wang P. Ouyang Q. Du W. Chen Y.-C. Chem. Commun. 2016; 52: 11104
    • 13b Zhan G. Shi M.-L. He Q. Lin W.-J. Ouyang Q. Du W. Chen Y.-C. Angew. Chem. Int. Ed. 2016; 55: 2147
  • 14 Lingam KA. P. Shanmugam P. Selvakumar K. Synlett 2012; 23: 278
  • 15 Curti C. Rassu G. Zambrano V. Pinna L. Pelosi G. Sartori A. Battistini L. Zanardi F. Casiraghi G. Angew. Chem. Int. Ed. 2012; 51: 6200

    • For representative articles on tertiary amine/(thio)urea organocatalysts, see:
    • 16a McCooey SH. Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
    • 16b Connon SJ. Chem. Commun. 2008; 2499
    • 16c Zhang Z. Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 16d Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593
  • 17 Rassu G. Zambrano V. Pinna L. Curti C. Battistini L. Sartori A. Pelosi G. Zanardi F. Casiraghi G. Adv. Synth. Catal. 2013; 355: 1881
    • 18a Chen Q. Wang G. Jiang X. Xu Z. Lin L. Wang R. Org. Lett. 2014; 16: 1394
    • 18b Strictly speaking, the Z/E nomenclature referring to the olefin geometry of the products depends upon the olefin substituents and CIP priority. Here and throughout this review, the double bond geometry of the prevailing diastereoisomers is that depicted in the formulas.
  • 19 Zhong Y. Ma S. Xu Z. Chang M. Wang R. RSC Adv. 2014; 4: 49930

    • For leading articles on squaramide-embedding organocatalysts, see:
    • 20a Malerich JP. Hagihara K. Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 20b Alemán J. Parra A. Jiang H. Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 20c Storer RI. Aciro C. Jones LH. Chem. Soc. Rev. 2011; 40: 2330
  • 21 Di Iorio N. Righi P. Ranieri S. Mazzanti A. Margutta RG. Bencivenni G. J. Org. Chem. 2015; 80: 7158
  • 22 Zheng C. Wang H.-F. Chen W.-Q. Chen W.-X. Chen F.-E. Asian J. Org. Chem. 2015; 4: 619
  • 23 Xiao X. Mei H. Chen Q. Zhao X. Lin L. Liu X. Feng X. Chem. Commun. 2015; 51: 580
  • 24 Lee JH. Lee S. Yu J. Kim JN. Tetrahedron Lett. 2014; 55: 2450
  • 25 Liu Y. Yang Y. Huang Y. Xu X.-H. Qing F.-L. Synlett 2015; 26: 67
  • 26 Due to the extreme paucity of examples in the literature, this heterocycle was not included among the vinylogous pro-nucleo­phile substrates in this review.
  • 27 Ranieri B. Sartori A. Curti C. Battistini L. Rassu G. Pelosi G. Casiraghi G. Zanardi F. Org. Lett. 2014; 16: 932
  • 28 Han J.-L. Chang C.-H. Chem. Commun. 2016; 52: 2322
  • 29 Rassu G. Zambrano V. Tanca R. Sartori A. Battistini L. Zanardi F. Curti C. Casiraghi G. Eur. J. Org. Chem. 2012; 466
    • 30a Denmark SE. Heemstra JR. Jr. J. Org. Chem. 2007; 72: 5668
    • 30b Denmark SE. Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 30c Denmark SE. Eklov BM. Yao PJ. Eastgate MD. J. Am. Chem. Soc. 2009; 131: 11770
  • 31 Curti C. Sartori A. Battistini L. Brindani N. Rassu G. Pelosi G. Lodola A. Mor M. Casiraghi G. Zanardi F. Chem. Eur. J. 2015; 21: 6433
  • 32 Strictly speaking, this reaction proceeds through a Michael-type addition to the unsaturated Morita–Baylis–Hillman intermediate; however, since the result of the reaction is an allylic alkylation product, examples of this chemistry were set apart among the vinylogous miscellaneous reactions.
  • 33 Feng J. Li X. Cheng J.-P. Chem. Commun. 2015; 51: 14342
  • 34 Ingemann I. Hiemstra H. In Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications. 1st ed., Vol. 1; Dalko PI. Wiley-VCH; Weinheim: 2013: Chap. 6, 119
    • 35a Elguero J. In Comprehensive Heterocyclic Chemistry II . Vol. 3. Shinkai I. Elsevier; Oxford: 1996: 371
    • 35b Elguero J. Goya P. Yagerovic N. Silva AM. S. In Targets in Heterocyclic Systems – Chemistry and Properties . Vol. 6. Attanasi OA. Spinelli D. Società Chimica Italiana; Rome: 2002: 52
    • 35c Fustero S. Sanchez-Roselló M. Barrio P. Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 36a Watanabe T. Tahara M. Todo S. Cardiovasc. Ther. 2008; 26: 101
    • 36b Pérez-González A. Galano A. J. Phys. Chem. B 2012; 116: 1180
  • 37 Hadi V. Koh Y.-H. Sanchez TW. Barrios D. Neamati N. Jung KW. Bioorg. Med. Chem. Lett. 2010; 20: 6854

    • Selected examples:
    • 38a Enders D. Grossman A. Gieraths B. Düzdemir M. Merkens C. Org. Lett. 2012; 14: 4254
    • 38b Šimek M. Remeš M. Veselý J. Rios R. Asian J. Org. Chem. 2013; 2: 64
    • 38c Tao Z.-L. Zhang W.-Q. Chen D.-F. Adele A. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255

      Selected examples:
    • 39a Chen Q. Liang J. Wang S. Wang D. Wang R. Chem. Commun. 2013; 49: 1654
    • 39b Zhang J.-X. Li N.-K. Liu Z.-M. Huang X.-F. Geng Z.-C. Wang X.-W. Adv. Synth. Catal. 2013; 355: 797
  • 40 Rassu G. Zambrano V. Pinna L. Curti C. Battistini L. Sartori A. Pelosi G. Casiraghi G. Zanardi F. Adv. Synth. Catal. 2014; 356: 2330
  • 41 Yetra SR. Mondal S. Mukherjee S. Gonnade RG. Biju AT. Angew. Chem. Int. Ed. 2016; 55: 268
    • 42a Ryan SJ. Candish L. Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 42b Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
    • 43a Igarashi Y. Ogura H. Furihata K. Oku N. Indananda C. Thamchaipenet A. J. Nat. Prod. 2011; 74: 670
    • 43b Thombal RS. Jadhav VH. Org. Biomol. Chem. 2015; 13: 9485
    • 43c Thorson MK. Van Wagoner RM. Harper MK. Ireland CM. Majtan T. Kraus JP. Barrios AM. Bioorg. Med. Chem. Lett. 2015; 25: 1064
    • 43d Chung C.-Y. Liu C.-H. Wang G.-H. Jassey A. Li C.-L. Chen L. Yen M.-H. Lin C.-C. Lin L.-T. Sci. Rep. 2016; 6: 29969
  • 44 Dell’Amico L. Albrecht Ł. Naicker T. Poulsen PH. Jørgensen KA. J. Am. Chem. Soc. 2013; 135: 8063
    • 45a Xu L.-W. Li L. Shi Z.-H. Adv. Synth. Catal. 2010; 352: 243
    • 45b Jensen KL. Dickmeiss G. Jiang H. Albrecht Ł. Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
  • 46 Curti C. Battistini L. Sartori A. Lodola A. Mor M. Rassu G. Pelosi G. Zanardi F. Casiraghi G. Org. Lett. 2011; 13: 4738
  • 47 de Castro PP. Carpanez AG. Amarante GW. Chem. Eur. J. 2016; 22: 10294
  • 48 Gao T.-P. Lin J.-B. Hu X.-Q. Xu P.-F. Chem. Commun. 2014; 50: 8934
  • 49 Zhao S. Zhao Y.-Y. Lin J.-B. Xie T. Liang Y.-M. Xu P.-F. Org. Lett. 2015; 17: 3206
  • 50 Halskov KS. Johansen TK. Davis RL. Steurer M. Jensen F. Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 12943
  • 51 This reaction was also studied with density functional theory, finding that it would proceed in a stepwise fashion by a combination of kinetic and thermodynamic control. See: Dieckmann A. Breugst M. Houk KN. J. Am. Chem. Soc. 2013; 135: 3237
  • 52 Donslund BS. Halskov KS. Leth LA. Matos Paz B. Jørgensen KA. Chem. Commun. 2014; 50: 13676
  • 53 For a review article on bifunctional amine–squaramide organocatalysts in asymmetric domino reactions see: Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 54 Halskov KS. Donslund BS. Barfüsser S. Jørgensen KA. Angew. Chem. Int. Ed. 2014; 53: 4137
  • 55 Duan J. Cao F. Wang X. Ma C. Chem. Commun. 2013; 49: 1124
  • 56 Nœsborg L. Halskov KS. Tur F. Mønsted SM. N. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 10193
  • 57 For an inspiring example of enantio- and diastereodivergent α-allylation of branched aldehydes using dual organocatalysis and metal catalysis, see: Krauwald S. Sarlah D. Schafroth MA. Carreira EM. Science 2013; 340: 1065
  • 58 Möhlmann L. Chang G.-H. Reddy GM. Lee C.-J. Lin W. Org. Lett. 2016; 18: 688
  • 59 The extremely strong electron-withdrawing character of the dicyanovinylidene moiety has been demonstrated (Hammet constant σp = 0 84 vs σp = 0 78 for NO2 group) and this explains how mild base catalysis may be sufficient to generate vinylogous γ-carbanions.
  • 60 Weir MR. S. Hyne JB. Can. J. Chem. 1964; 42: 1440
  • 61 Poulsen TB. Alemparte C. Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 11614
  • 62 Xue D. Chen Y.-C. Wang Q.-W. Cun L.-F. Zhu J. Deng J.-G. Org. Lett. 2005; 7: 5293
  • 63 Poulsen TB. Bell M. Jørgensen KA. Org. Biomol. Chem. 2006; 4: 63
  • 64 Jiang L. Zheng H.-T. Liu T.-Y. Yue L. Chen Y.-C. Tetrahedron 2007; 63: 5123

    • For other examples of vinylogous Michael additions of cycloalkylidene malononitriles to nitroolefins in the period 2005–2010, see:
    • 65a Xue D. Li J. Zhang Z.-T. Deng J.-G. J. Org. Chem. 2007; 72: 5443
    • 65b Su W. Ding K. Chen Z. Tetrahedron Lett. 2009; 50: 636
  • 66 Chen W.-Y. Ouyang L. Chen R.-Y. Li X.-S. Synth. Commun. 2012; 42: 2585
  • 67 Zhou L.-H. Wang N. Chen G.-N. Yang Q. Yang S.-Y. Zhang W. Zhang Y. Yu X.-Q. J. Mol. Catal. B: Enzym. 2014; 109: 170
  • 68 Xie J.-W. Yue L. Xue D. Ma X.-L. Chen Y.-C. Wu Y. Zhu J. Deng J.-G. Chem. Commun. 2006; 1563
  • 69 Lu J. Liu F. Loh T.-P. Adv. Synth. Catal. 2008; 350: 1781
  • 70 Lu J. Liu F. Zhou W.-J. Loh T.-P. Tetrahedron Lett. 2008; 49: 5389
  • 71 Dell’Amico L. Rassu G. Zambrano V. Sartori A. Curti C. Battistini L. Pelosi G. Casiraghi G. Zanardi F. J. Am. Chem. Soc. 2014; 136: 11107
    • 72a For ε-selective Michael-type reactions of 3-propenyl-2-cyclohexenones via linear trienamine activation, see: Zhou Z. Feng X. Yin X. Chen Y.-C. Org. Lett. 2014; 16: 2370
    • 72b For formal [4+2] α′,β-selective annulations via crossed enamine catalysis, see: Feng X. Zhou Z. Zhou R. Zhou Q.-Q. Dong L. Chen Y.-C. J. Am. Chem. Soc. 2012; 134: 19942
  • 73 Li Q.-Z. Gu J. Chen Y.-C. RSC Adv. 2014; 4: 37522
  • 74 Brindani N. Rassu G. Dell’Amico L. Zambrano V. Pinna L. Curti C. Sartori A. Battistini L. Casiraghi G. Pelosi G. Greco D. Zanardi F. Angew. Chem. Int. Ed. 2015; 54: 7386
  • 75 Xie J.-W. Chen W. Li R. Zeng M. Du W. Yue L. Chen Y.-C. Wu Y. Zhu J. Deng J.-G. Angew. Chem. Int. Ed. 2007; 46: 389
  • 76 Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748
  • 77 Kang T.-R. Xie J.-W. Du W. Feng X. Chen Y.-C. Org. Biomol. Chem. 2008; 6: 2673
  • 78 Rout S. Ray SK. Unhale RA. Singh VK. Org. Lett. 2014; 16: 5568
  • 79 Alemán J. Jacobsen CB. Frisch K. Overgaard J. Jørgensen KA. Chem. Commun. 2008; 632
  • 80 Li X. Xu X. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 428
  • 81 Zhou R. Wang J. Tian J. He Z. Org. Biomol. Chem. 2012; 10: 773
  • 82 Alizadeh A. Hosseini SY. Sedighian H. Bayat F. Helv. Chim. Acta 2015; 98: 1426
    • 83a Griffits J. Lockwood M. Roozpeikar B. J. Chem. Soc., Perkin Trans. 2 1977; 1608
    • 83b Sepiol J. Milart P. Tetrahedron 1985; 41: 5261
  • 84 Cui S.-L. Lin X.-F. Wang Y.-G. J. Org. Chem. 2005; 70: 2866
  • 85 Wang X.-S. Zhang M.-M. Li Q. Yao C.-S. Tu S.-J. Tetrahedron 2007; 63: 5265
  • 86 Babu TH. Joseph AA. Muralidharan D. Perumal PT. Tetrahedron Lett. 2010; 51: 994
  • 87 Huang X.-F. Zhang Y.-F. Qi Z.-H. Li N.-K. Geng Z.-C. Li K. Wang X.-W. Org. Biomol. Chem. 2014; 12: 4372
  • 88 Gajulapalli VP. R. Vinayagam P. Kesavan V. RSC Adv. 2015; 5: 7370
  • 89 For a recent report on the multi-component one-pot and base-promoted reaction of 1,1-dicyanomethylene-3-indanone, isatin and malononitrile to give racemic spirooxindole-fused indenopyridine salts, see: Shakibaei GI. Bazgir A. RSC Adv. 2016; 6: 22306
  • 90 For a report dealing with the one-pot tandem reaction of cycloalkylidene malononitriles and ketene dithioacetals in the presence of hydrazine giving achiral dicyanoanilines or pyrazolopyridine derivatives, see: Alizadeh A. Hosseini SY. Vahabi AH. Synlett 2014; 25: 2475
  • 91 Alizadeh A. Hosseini SY. Sedighian H. Bayat F. Zhu Z. Dusek M. Tetrahedron 2015; 71: 7885
  • 92 Yamuma E. Zeller M. Prasad KJ. R. Tetrahedron Lett. 2011; 52: 1649
  • 93 Zhang M. Zhang J. Chem. Eur. J. 2014; 20: 399
  • 94 Attanasi OA. Favi G. Geronikaki A. Mantellini F. Moscatelli G. Paparisva A. Org. Lett. 2013; 15: 2624
  • 95 Shi X.-M. Dong W.-P. Zhu L.-P. Jiang X.-X. Wang R. Adv. Synth. Catal. 2013; 355: 3119
  • 96 Kiruthika SE. Perumal PT. Balachandran C. Ignacimuthu S. J. Chem. Sci. 2014; 126: 177
  • 97 Panday SK. Tetrahedron: Asymmetry 2011; 22: 1817
  • 98 Lu Y.-L. Sun J. Xie Y.-J. Yan C.-G. RSC Adv. 2016; 6: 23390
  • 99 Liu T.-Y. Cui H.-L. Long J. Li B.-J. Wu Y. Ding L.-S. Chen Y.-C. J. Am. Chem. Soc. 2007; 129: 1878
  • 100 Xiong X.-F. Jia Z.-J. Du W. Jiang K. Liu T.-Y. Chen Y.-C. Chem. Commun. 2009; 6994
  • 101 Niess B. Jørgensen KA. Chem. Commun. 2007; 1620
  • 102 Chen W.-Y. Li X.-S. Catal. Commun. 2009; 10: 549
  • 103 For a further study dealing with the asymmetric vinylogous Mannich reaction of α,α-dicyanoolefins and α-amido sulfones using phase-transfer catalysis, see: Lu J. Chen W.-Y. Bull. Korean Chem. Soc. 2012; 33: 3175
  • 104 Chen Q.-A. Zeng W. Wang D.-W. Zhou Y.-G. Synlett 2009; 2236
  • 105 Babu TH. Karthik K. Perumal PT. Synlett 2010; 1128
  • 106 Yu B. Qi P.-P. Shi X.-J. Shan L.-H. Yu D.-Q. Liu H.-M. Steroids 2014; 88: 44
  • 107 Van Steenwinckel D. Hendrickx E. Persoons A. Van den Broeck K. Samyn C. J. Chem. Phys. 2000; 112: 11030
  • 108 Luo J. Hua J. Qin J. Cheng J. Shen Y. Lu Z. Wang P. Ye C. Chem. Commun. 2001; 171
  • 109 Park KH. Tweig RJ. Ravikaran R. Rhodes LF. Shick RA. Yankelevich D. Knoesen A. Macromolecules 2004; 37: 5163
  • 110 Kim P.-J. Kwon O-P. Jazbinsek M. Yun H. Günter P. Dyes Pigments 2010; 86: 149
  • 111 Kosilkin IV. Hillenbrand EA. Tongwa P. Fonari A. Zazueta J. Fonari MS. Antipin M. Dalton LR. Timofeeva T. J. Mol. Struct. 2011; 1006: 356
  • 112 Shi Z. Zhang X. Yang G. Su Z. Cui Z. Tetrahedron 2011; 67: 4110
  • 113 Kim S.-H. Gwon S.-Y. Bae J.-S. Son Y.-A. Spectrochim. Acta: A 2011; 78: 234
  • 114 Zhang X. Chen Y. Dyes Pigments 2013; 99: 531
  • 115 Zhen Z. Yu Z. Yang M. Jin F. Zhang Q. Zhou H. Wu J. Tian Y. J. Org. Chem. 2013; 78: 3222
  • 116 Redon S. Massin J. Pouvreau S. De Meulenaere E. Clays K. Queneau Y. Andraud C. Girard-Egrot A. Bretonnière Y. Chambert S. Bioconjugate Chem. 2014; 25: 773
  • 117 Gao Z. Zhang X. Chen Y. Dyes Pigments 2015; 113: 257
  • 118 Choudhary AS. Patil SR. Sekar N. J. Fluoresc. 2015; 25: 1095
  • 119 Lanke SK. Sekar N. Dyes Pigments 2016; 126: 62
  • 120 Trivedi AR. Desa JM. Dholariya BH. Dodiya DK. Shah VH. Med. Chem. Res. 2012; 21: 1471
  • 121 Cui H.-L. Peng J. Feng X. Du W. Jiang K. Chen Y.-C. Chem. Eur. J. 2009; 15: 1574
  • 122 Zahouily M. Bahlaouan B. Abrouki Y. Salah M. Bahlaouan O. Rayadh A. Aadil M. Sebti S. J. Chem. Res. 2006; 34
  • 123 For a report dealing with similar chemistry en route to azido­thienopyridine carboxylates, see: Chaouni W. Aadil M. Djellal A. Kirsch G. Z. Naturforsch., B 2014; 69: 509