Synthesis 2018; 50(09): 1750-1772
DOI: 10.1055/s-0036-1589529
review
© Georg Thieme Verlag Stuttgart · New York

Claisen Rearrangements of Benzyl Vinyl Ethers and Heterobenzyl Vinyl Ethers

Jed M. Burns
The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia Campus, Brisbane, Qld 4072, Australia   Email: r.mcgeary@uq.edu.au
,
Elizabeth H. Krenske
The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia Campus, Brisbane, Qld 4072, Australia   Email: r.mcgeary@uq.edu.au
,
Ross P. McGeary*
The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia Campus, Brisbane, Qld 4072, Australia   Email: r.mcgeary@uq.edu.au
› Author Affiliations
We thank the Australian Research Council (FT120100632 to E. H. K.) for financial support.
Further Information

Publication History

Received: 13 November 2017

Accepted after revision: 15 November 2017

Publication Date:
07 March 2018 (online)


Abstract

The Claisen rearrangement of benzylic substrates (benzyl vinyl­ ethers) has received considerably less attention than its well-known aliphatic and normal aromatic variants. Here, we review the rearrangement of both benzylic and heterobenzylic substrates, with examples of the reaction’s use in the synthesis of natural products and drug-like molecules.

1 Introduction

2 Early Attempts at the Benzyl-Claisen Rearrangement

3 Successful Benzylic Examples

4 Heterobenzylic Examples

5 Conclusion

 
  • References

  • 1 Claisen L. Ber. Dtsch. Chem. Ges. 1912; 45: 3157
  • 2 Martín Castro AM. Chem. Rev. 2004; 104: 2939
  • 3 Ziegler FE. Chem. Rev. 1988; 88: 1423
  • 4 Ito H. Taguchi T. Chem. Soc. Rev. 1999; 28: 43
  • 5 Ganem B. Angew. Chem., Int. Ed. Engl. 1996; 35: 936
  • 6 Ziegler FE. Acc. Chem. Res. 1977; 10: 227
  • 7 The Claisen Rearrangement . Hiersemann M. Nubbemeyer U. Wiley-VCH; Weinheim: 2007
  • 8 Burns JM. Krenske EH. McGeary RP. Eur. J. Org. Chem. 2017; 252
  • 9 Krenske EH. Burns JM. McGeary RP. Org. Biomol. Chem. 2017; 15: 7887
  • 10 Burgstahler AW. Gibbons LK. Nordin IC. J. Chem. Soc. 1963; 4986
  • 11 Cossey AL. Gunter MJ. Mander LN. Tetrahedron Lett. 1980; 21: 3309
  • 12 Shiina I. Nagasue H. Tetrahedron Lett. 2002; 43: 5837
  • 13 Woodward RB. Hoffmann R. Angew. Chem., Int. Ed. Engl. 1969; 8: 781
  • 14 Pitteloud R. Petrzilka M. Helv. Chim. Acta 1979; 62: 1319
  • 15 Palani N. Balasubramanian KK. Tetrahedron Lett. 1995; 36: 9527
  • 16 McElvain SM. Anthes HI. Shapiro SH. J. Am. Chem. Soc. 1942; 64: 2525
  • 17 Wick AE. Felix D. Steen K. Eschenmoser A. Helv. Chim. Acta 1964; 47: 2425
  • 18 Felix D. Gschwend-Steen K. Wick AE. Eschenmoser A. Helv. Chim. Acta 1969; 52: 1030
  • 19 Raucher S. Lui AS. T. J. Am. Chem. Soc. 1978; 100: 4902
  • 20 Raucher S. Jones DS. Stenkamp RE. J. Org. Chem. 1985; 50: 4523
  • 21 Dauben WG. Ponaras AA. Chollet A. J. Org. Chem. 1980; 45: 4413
  • 22 Ponaras AA. J. Org. Chem. 1983; 48: 3866
  • 23 le Noble WJ. Crean PJ. J. Am. Chem. Soc. 1964; 86: 1649
  • 24 Endo T. Yamukai N. JP 62053939 A, 1987
  • 25 Valerio V. Madelaine C. Maulide N. Chem.–Eur. J. 2011; 17: 4742
  • 26 Tudjarian AA. Minehan TG. J. Org. Chem. 2011; 76: 3576
  • 27 D’Souza DM. Liao W.-W. Rominger F. Müller TJ. J. Org. Biomol. Chem. 2008; 6: 532
  • 28 Burns JM. Ph.D. Thesis . The University of Queensland; Australia: 2016. DOI: 10.14264/uql.2016.456
  • 29 Thomas AF. Helv. Chim. Acta 1970; 53: 605
  • 30 Kuznetsova SV. Anisimov AV. Viktorova EA. Russ. J. Org. Chem. 1988; 24: 777
  • 31 Kuznetsova SV. Egorov AM. Anisimov AV. Viktorova EA. Chem. Heterocycl. Compd. 1989; 25: 21
  • 32 Thomas AF. Ozainne M. J. Chem. Soc. C 1970; 220
  • 33 Lee T.-j. Tetrahedron Lett. 1979; 20: 2297
  • 34 Martinez LP. Umemiya S. Wengryniuk SE. Baran PS. J. Am. Chem. Soc. 2016; 138: 7536
  • 35 Whitesell JK. Helbling AM. J. Org. Chem. 1980; 45: 4135
  • 36 Nemoto H. Shitara E. Fukumoto K. Kametani T. Heterocycles 1985; 23: 549
  • 37 Nemoto H. Shitara E. Fukumoto K. Kametani T. Heterocycles 1985; 23: 1911
  • 38 Nemoto H. Shitara E. Fukumoto K. Kametani T. Heterocycles 1987; 25: 51
  • 39 Shishido K. Shitara E. Fukumoto K. Kametani T. J. Am. Chem. Soc. 1985; 107: 5810
  • 40 Craig D. King NP. Kley JT. Mountford DM. Synthesis 2005; 3279
  • 41 Camp JE. Craig D. Funai K. White AJ. P. Org. Biomol. Chem. 2011; 9: 7904
  • 42 Buechi G. Vogel DE. J. Org. Chem. 1983; 48: 5406
  • 43 Reinaud O. Capdevielle P. Maumy M. Synthesis 1988; 293
  • 44 Reinaud O. Capdevielle P. Maumy M. Tetrahedron 1987; 43: 4167
  • 45 Burger K. Hennig L. Tsouker P. Spengler J. Albericio F. Koksch B. Amino Acids 2006; 31: 55
  • 46 Akbutina FA. Yumagulova SA. Vasil’eva EV. Miftakhov MS. Russ. J. Org. Chem. 2002; 38: 759
  • 47 Raucher S. Lui AS. T. Macdonald JE. J. Org. Chem. 1979; 44: 1885
  • 48 Shue YK. Carrera GM. Hutchins CW. Garvey DS. Nadzan AM. J. Org. Chem. 1991; 56: 2936
  • 49 Bennani Y. Huck B. Robarge M. Bom D. Varga N. Tumey L. US 20060003990, 2006
  • 50 Raucher S. Macdonald JE. Lawrence RF. J. Am. Chem. Soc. 1981; 103: 2419
  • 51 Raucher S. Klein P. J. Org. Chem. 1986; 51: 123
  • 52 Raucher S. Macdonald JE. Lawrence RF. Tetrahedron Lett. 1980; 21: 4335
  • 53 Raucher S. Hwang K.-J. Macdonald JE. Tetrahedron Lett. 1979; 20: 3057
  • 54 Mukhanova TI. Kukushkin SY. Ivanov PY. Alekseeva LM. Granik VG. Russ. Chem. Bull. 2007; 56: 325
  • 55 Yin B. Zeng G. Cai C. Ji F. Huang L. Li Z. Jiang H. Org. Lett. 2012; 14: 616
  • 56 Sado M. Abe H. Inuzuka N. Shirai K. Kumamoto T. Bull. Chem. Soc. Jpn. 1983; 56: 1665
  • 57 Jeanmart SA. M. Mathews CJ. Smith SC. Taylor JB. Govenkar M. TN 2009000536, 2008
  • 58 Jeanmart SA. M. Longstaff A. Mathews CJ. Russell CJ. Viner RC. Wood FK. CN 102471311, 2011
  • 59 Stevenson TM. Selby TP. Deprez NR. Taggi AE. Debergh JR. MX 2016014190, 2015
  • 60 Costin CR. Morrow CJ. Rapoport H. J. Org. Chem. 1976; 41: 535
  • 61 Petasis NA. Lu S.-P. Tetrahedron Lett. 1995; 36: 2393