Synlett 2017; 28(20): 2829-2832
DOI: 10.1055/s-0036-1590742
letter
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Palladium-Catalyzed Conjugate Addition of Arylboronic Acids to α-Substituted Cyclic Enones

Ang Gaoa, Xiu-Yan Liua, Chang-Hua Ding*a, Xue-Long Hou*a, b
  • aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, P. R. of China   Email: dingch@sioc.ac.cn   Email: xlhou@sioc.ac.cn
  • bShanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, P. R. of China
The authors acknowledge financial support from the National Natural Science Foundation of China (NSFC) (21532010, 21372242, 21472214, 21421091), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20030100), the NSFC and the Research Grants Council of Hong Kong Joint Research Scheme (21361162001), the Technology Commission of Shanghai Municipality, and the Croucher Foundation of Hong Kong.
Further Information

Publication History

Received: 22 May 2017

Accepted after revision: 05 July 2017

Publication Date:
23 August 2017 (eFirst)

This paper is dedicated to Professor Victor Snieckus on the occasion of his 80th birthday.

Abstract

A palladium-catalyzed conjugate addition of arylboronic acids to α-substituted cyclic enones was developed to give α,β-disubstituted ketones with high diastereoselectivity. Mechanistic investigation showed that the high diastereoselectivity was realized through epimerization.

Supporting Information

 
  • References and Notes

    • 1a Rosiak A. Rössle M. Synthesis 2007; 1279
    • 1b Hawner C. Alexakis A. Chem. Commun. 2010; 7295
    • 1c Gutnov A. Eur. J. Org. Chem. 2008; 4547
    • 1d Christoffers J. Koripelly G. Liu Y. Han S.-J. Liu W.-B. Stoltz BM. Acc. Chem. Res. 2015; 48: 740
    • 2a Hird AW. Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 14988
    • 2b Alexakis A. Bäckvall JE. Krause N. Pàmies O. Diéguez M. Chem. Rev. 2008; 108: 2796
    • 2c Harutyunyan SR. den Hartog T. Geurts K. Minnaard AJ. Feringa BL. Chem. Rev. 2008; 108: 2824
    • 3a Takaya Y. Ogasawara M. Hayashi T. Sakai M. Miyaura N. J. Am. Chem. Soc. 1998; 120: 5579
    • 3b Hayashi T. Yamasaki K. Chem. Rev. 2003; 103: 2829
    • 3c Hayashi T. Ueyama K. Tokunaga N. Yoshida K. J. Am. Chem. Soc. 2003; 125: 11508
    • 3d Paquin J.-F. Defieber C. Stephenson CR. J. Carreira EM. J. Am. Chem. Soc. 2005; 127: 10850
    • 3e Shintani R. Duan W.-L. Hayashi T. J. Am. Chem. Soc. 2006; 128: 5628
    • 3f Wang Z.-Q. Feng C.-G. Zhang S.-S. Xu M.-H. Lin G.-Q. Angew. Chem. Int. Ed. 2010; 49: 5780
    • 4a Nishikata T. Yamamoto Y. Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 2768
    • 4b Lu X. Lin S. J. Org. Chem. 2005; 70: 9651
    • 4c Gini F. Hessen B. Minnaard AJ. Org. Lett. 2005; 7: 5309
    • 4d Nishikata T. Yamamoto Y. Miyaura N. Adv. Synth. Catal. 2007; 349: 1759
    • 4e Nishitaka T. Kiyomura S. Yamamoto Y. Miyaura N. Synlett 2008; 2487
    • 4f Lin S. Lu X. Org. Lett. 2010; 12: 2536
    • 4g Xu Q. Zhang R. Zhang T. Shi M. J. Org. Chem. 2010; 75: 3935
    • 4h Kikushima K. Holder JC. Gatti M. Stoltz BM. J. Am. Chem. Soc. 2011; 133: 6902
    • 4i Gottumukkala AL. Matcha K. Lutz M. de Vries JG. Minnaard AJ. Chem. Eur. J. 2012; 22: 6907
    • 4j Holder JC. Zou L. Marziale AN. Liu P. Lan Y. Gatti M. Kikushima K. Houk KN. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 14996
    • 4k Gerten AL. Stanley LM. ­Tetrahedron Lett. 2016; 57: 5460
    • 5a Sim TB. Choi J. Joung MJ. Yoon NM. J. Org. Chem. 1997; 62: 2357
    • 5b Prabagaran N. Sundararajan G. Tetrahedron: Asymmetry 2002; 13: 1053
    • 5c Jang DO. Cho DH. Synlett 2002; 631
    • 5d Lee PH. Seomoon D. Lee K. Heo Y. J. Org. Chem. 2003; 68: 2510
    • 5e Shen Z.-L. Cheong H.-L. Loh T.-P. Tetrahedron Lett. 2009; 50: 1051
    • 5f Taber DF. Guo P. Pirrot MT. J. Org. Chem. 2010; 75: 5737
    • 5g Tian X. Cassani C. Liu Y. Moran A. Urakawa A. Galzerano P. Arceo E. Melchiorre P. J. Am. Chem. Soc. 2011; 133: 17934
    • 5h Shrestha R. Dom SC. M. Weix DJ. J. Am. Chem. Soc. 2013; 135: 751
    • 6a Vuagnoux-d’Augustin M. Kehrli S. Alexakis A. Synlett 2007; 2057
    • 6b Vuagnoux-d’Augustin M. Alexakis A. Chem. Eur. J. 2007; 13: 9647
    • 6c Ngoc DT. Albicker M. Schmeider L. Cramer N. Org. Biomol. Chem. 2010; 8: 1781
    • 6d Gärtner M. Qu J. Helmchen G. J. Org. Chem. 2012; 77: 1186
    • 6e Silva AL. Toscano RA. Maldonado LA. J. Org. Chem. 2013; 78: 5282
    • 6f Pan J.-L. Chen T. Zhang Z.-Q. Li Y.-F. Zhang X.-M. Zhang F.-M. Chem. Commun. 2016; 2382
    • 7a Germain N. Guénée L. Mauduit M. Alexakis A. Org. Lett. 2014; 16: 118
    • 7b Calvo BC. Madduri AV. R. Harutyunyan SR. Minnaard AJ. Adv. Synth. Catal. 2014; 356: 2061
    • 7c Germain N. Alexakis A. Chem. Eur. J. 2015; 21: 8597
    • 8a Zhang T.-K. Mo D.-L. Dai L.-X. Hou X.-L. Org. Lett. 2008; 10: 3689
    • 8b Ding C.-H. Hou X.-L. Bull. Chem. Soc. Jpn. 2010; 83: 992
    • 8c Huang X.-J. Mo D.-L. Ding C.-H. Hou X.-L. Synlett 2011; 943
    • 8d Li H. Gao A. Liu X.-Y. Ding C.-H. Xu B. Hou X.-L. Synthesis 2017; 49: 159
    • 9a Ohmiya H. Yorimitsu H. Oshima K. J. Am. Chem. Soc. 2006; 128: 1886
    • 9b DeTitta GT. Langs DA. Edmonds JW. Biochemistry 1979; 18: 3387
    • 9c Bellavance É. Luu-The V. Poirier D. J. Med. Chem. 2009; 52: 7488
  • 10 Oxidative Heck reaction of cyclohexanone with phenylboronic acid was reported to proceed in the presence of Pd(OAc)2 and 2,9-dimethyl-1,10-phenanthroline under an oxygen balloon. For details, see: Yoo KS. Yoon CH. Jung KW. J. Am. Chem. Soc. 2006; 128: 16384
  • 11 Typical experimental procedure: To a flame-dried 25 mL Schlenk tube were added Pd(TFA)2 (4.2 mg, 0.0125 mmol), ligand L2 (2.3 mg, 0.015 mmol), and anhydrous DMAc (1.0 mL). The resulting mixture was stirred for 60 min. Arylboronic acid 2b (68.0 mg, 0.5 mmol) and ketone 1a (24.0 mg, 0.25 mmol) were added subsequently. The resulting reaction mixture was stirred at 80 °C for 24 h. Water (10 mL) was added and the aqueous phase was extracted with ethyl acetate (2 × 10 mL). The combined organic phase was washed with water (3 × 10 mL) and brine (10 mL). The organic phase was dried over anhydrous Na2SO4 and filtered. After the volatile materials were removed in vacuo, the ratio of two diastereoisomers was determined by GC chromatography. The resulting residue was then subjected to flash chromatography on silica gel with petroleum ether and ethyl acetate as eluent to give product 3b (39.9 mg, 85%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.33–7.01 (m, 5 H), 3.10 (td, J = 12.1, 5.2 Hz, 1 H), 2.61–2.48 (m, 1 H), 2.43–2.17 (m, 7 H), 1.87–1.71 (m, 1 H), 1.01 (dd, J = 6.8, 1.3 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 219.7, 140.3, 136.4, 130.6, 126.5, 126.4, 124.7, 51.0, 46.0, 37.6, 29.1, 19.8, 12.1. IR (neat): 2962, 1738, 1492, 1459, 1406, 1260, 1147, 1090, 1021, 798, 761, 732. MS (EI): m/z (%) = 187 (60) [M+], 132 (90), 114 (100), 90 (50). HRMS (EI): m/z [M]+ calcd for C13H16O: 188.1201; found: 188.1199.
  • 12 Han X. Wang X. Pei T. Widenhoefer RA. Chem. Eur. J. 2004; 10: 6333