Synthesis 2017; 49(20): 4670-4675
DOI: 10.1055/s-0036-1590802
special topic
© Georg Thieme Verlag Stuttgart · New York

1,3,4-Oxadiazole and Heteroaromatic-Fused 1,2,4-Triazole Synthesis­ Using Diverted Umpolung Amide Synthesis

Kazuyuki Tokumaru*
Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1822, USA   Email:   Email:
Kalisankar Bera
Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1822, USA   Email:   Email:
Jeffrey N. Johnston*
Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1822, USA   Email:   Email:
› Author Affiliations
Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health (GM 063557).
Further Information

Publication History

Received: 02 May 2017

Accepted after revision: 29 May 2017

Publication Date:
07 August 2017 (online)

Published as part of the Special Topic Modern Strategies for Heterocycles Synthesis


Umpolung Amide Synthesis (UmAS) has emerged as a superior alternative to conventional amide synthesis methods based on carbonyl electrophiles in a range of situations, particularly when epimerization-prone couplings are prescribed. In an unanticipated development during our most recent studies, we discovered that diacyl hydrazide products from UmAS were not formed as intermediates when using an acyl hydrazide as the amine acceptor. This resulted in a new preparation of 1,3,4-oxadiazoles from α-bromonitroalkane donors. We hypothesized that a key tetrahedral intermediate in UmAS was diverted toward a more direct pathway to the heterocycle product rather than through formation of the diacyl hydrazide, a typical oxadiazole progenitor. In studies reported here, diversion to 1,2,4-triazole products is described, a behavior hypothesized to also result from an analogous tetrahedral intermediate, but one formed from heteroaromatic hydrazine acceptors.

Supporting Information

  • References

  • 1 Baucom KD. Jones SC. Roberts SW. Org. Lett. 2016; 18: 560
    • 2a Thiel OR. Achmatowicz MM. Reichelt A. Larsen RD. Angew. Chem. Int. Ed. 2010; 49: 8395
    • 2b Padalkar VS. Patil VS. Phatangare KR. Umape PG. Sekar N. Synth. Commun. 2011; 41: 925
  • 3 For a review, see: Patel KD. Prajapati SM. Panchal SN. Patel HD. Synth. Commun. 2014; 44: 1859
  • 4 Rajapakse HA. Zhu H. Young MB. Mott BT. Tetrahedron Lett. 2006; 47: 4827
  • 5 Xu C. Jia F.-C. Cai Q. Li D.-K. Zhou Z.-W. Wu A.-X. Chem. Commun. 2015; 51: 6629

    • Innovative exceptions: 2-amino-1,3,4-oxadiazoles from an isocyanide:
    • 6a Fang T. Tan Q. Ding Z. Liu B. Xu B. Org. Lett. 2014; 16: 2342

    • From a tetrazole, see:
    • 6b Wang L. Cao J. Chen Q. He M. J. Org. Chem. 2015; 80: 4743
    • 6c Huisgen R. Sauer J. Sturm HJ. Angew. Chem. 1958; 70: 272
  • 7 Rosanò L. Di Castro V. Spinella F. Nicotra MR. Natali PG. Bagnato A. Mol. Cancer Ther. 2007; 6: 2003
  • 8 Deeks SG. Kar S. Gubernick SI. Kirkpatrick P. Nat. Rev. Drug Discov. 2008; 7: 117
  • 9 Ducharme Y. Blouin M. Brideau C. Châteauneuf A. Gareau Y. Grimm EL. Juteau H. Laliberté S. MacKay B. Massé F. Ouellet M. Salem M. Styhler A. Friesen RW. ACS Med. Chem. Lett. 2010; 1: 170
  • 10 Koltun DO. Parkhill EQ. Elzein E. Kobayashi T. Notte GT. Kalla R. Jiang RH. Li X. Perry TD. Avila B. Wang W.-Q. Smith-Maxwell C. Dhalla AK. Rajamani S. Stafford B. Tang J. Mollova N. Belardinelli L. Zablocki JA. Bioorg. Med. Chem. Lett. 2016; 26: 3202
  • 11 Rombouts FJ. R. Tresadern G. Buijnsters P. Langlois X. Tovar F. Steinbrecher TB. Vanhoof G. Somers M. Andrés J.-I. Trabanco AA. ACS Med. Chem. Lett. 2015; 6: 282
  • 12 Lee J. Shizu K. Tanaka H. Nomura H. Yasuda T. Adachi C. J. Mater. Chem. C 2013; 1: 4599
  • 13 Boezio AA. Copeland KW. Rex K. Albrecht BK. Bauer D. Bellon SF. Boezio C. Broome MA. Choquette D. Coxon A. Dussault I. Hirai S. Lewis R. Lin M.-HJ. Lohman J. Liu J. Peterson EA. Potashman M. Shimanovich R. Teffera Y. Whittington DA. Vaida KR. Harmange J.-C. J. Med. Chem. 2016; 59: 2328
  • 14 Tokumaru K. Johnston JN. Chem. Sci. 2017; 8: 3187
  • 15 Shen B. Makley DM. Johnston JN. Nature 2010; 465: 1027
  • 16 Wolman Y. Gallop PM. Patchornik A. Berger A. J. Am. Chem. Soc. 1962; 84: 1889
  • 17 Boström J. Hogner A. Llinàs A. Wellner E. Plowright AT. J. Med. Chem. 2012; 55: 1817
  • 18 Frost JR. Scully CC. G. Yudin AK. Nat. Chem. 2016; 8: 1105
  • 19 Shackleford JP. Shen B. Johnston JN. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 44

    • For additional enantioselective syntheses of α-bromonitroalkanes, see:
    • 20a Dong L.-t. Lu R.-j. Du Q.-s. Zhang J.-m. Liu S.-p. Xuan Y.-n. Yan M. Tetrahedron 2009; 65: 4124
    • 20b Dobish MC. Villalta F. Waterman MR. Lepesheva GI. Johnston JN. Org. Lett. 2012; 14: 6322
    • 20c Schwieter KE. Johnston JN. ACS Catal. 2015; 5: 6559
  • 21 For α-bromonitroalkane synthesis from enantiopure substrates, see: Concellón JM. Rodríguez-Solla H. Concellón C. García-Granda S. Díaz MR. Org. Lett. 2006; 8: 5979
    • 22a Hochstein W. Schollkopf U. Ann. 1978; 1823
    • 22b Hartshorn MP. Robinson WT. Wright GJ. Cheng LY. Aust. J. Chem. 1989; 42: 1569
    • 22c Amin MR. Dekker L. Hibbert DB. Ridd JH. Sandall JP. B. J. Chem. Soc., Chem. Commun. 1986; 658
    • 22d Nguyen NV. Baum K. Tetrahedron Lett. 1992; 33: 2949
    • 22e Baum K. Archibald TG. Tzeng D. Gilardi R. Flippen-Anderson JL. George C. J. Org. Chem. 1991; 56: 537
    • 22f Bergman J. Brimert T. Tetrahedron 1999; 55: 5581
    • 22g Ketari R. Foucaud A. J. Org. Chem. 1981; 46: 4498
    • 22h Tzeng D. Baum K. J. Org. Chem. 1983; 48: 5384
  • 23 It may be possible to intercept the alkyl nitrite ester normally hypothesized, prior to its formation.
  • 24 Gao Q. Liu S. Wu X. Zhang J. Wu A. Org. Lett. 2015; 17: 2960