Synlett 2017; 28(20): 2800-2806
DOI: 10.1055/s-0036-1590883
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Dansyl-Substituted Cryptands Containing Triaza­cycloalkane Moieties and their Evaluation as Fluorescent Chemosensors

Nataliya M. Chernichenko, Vadim N. Shevchuk, Alexei D. Averin, Olga A. Maloshitskaya, Irina P. Beletskaya*
  • Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1–3, Moscow, 119991, Russia   Email: beletska@org.chem.msu.ru
This work was financially supported by the RFBR grants N 17-53-16012 and 15-03-04698
Further Information

Publication History

Received: 28 June 2017

Accepted after revision: 28 July 2017

Publication Date:
21 September 2017 (eFirst)

Dedicated to Professor Victor Snieckus

Abstract

A method for the synthesis of a new family of cryptands containing 1,4,7-triazacyclononane and 1,5,9-triazacyclododecane moieties and dansyl fluorophore groups has been elaborated starting from free triazacycloalkanes and employing Pd(0)-catalyzed amination at the macrocyclization step. The dependence of the products yields on the nature of reagents has been established. The majority of synthesized macrobicycles have been evaluated as possible chemosensors for detecting metal cations. Compound comprising 1,4,7-triazacyclononane and dioxadiamine linker proved to be a prospective colorimetric sensor for Cu(II) by changing its absorption spectrum in the presence of this cation, while other cryptands demonstrated full quenching of fluorescence in the presence of Cu(II) and Al(III) what makes them promising fluorescent molecular probes for these metals.

Supporting Information

 
  • References and Notes

    • 1a Pren N. Sykes B. Sykes AG. J. Org. Chem. 2012; 77: 8428
    • 1b Fedorov YV. Fedorova OA. Andryushkina EN. Shepel NE. Mashura MM. Gromov SP. Kuzmina LG. Churakov AV. Howard JA. K. Marmois E. Oberle J. Jonauskas G. Alfimov MV. J. Phys. Org. Chem. 2005; 18: 1032
    • 2a Azadbakht R. Parviz M. Tamari E. Keypour H. Golbedaghi R. Spectrochimica Acta Part A 2011; 82: 200
    • 2b Li Y.-P. Yang H.-R. Zhao Q. Song W.-C. Han J. Bu X.-H. Inorg. Chem. 2012; 51: 9642
    • 2c Li M. Lu H.-Y. Liu R.-L. Chen J.-D. Chen C.-F. J. Org. Chem. 2012; 77: 3670
    • 2d Kumar M. Kumar N. Bhalla V. Singh H. Sharma PR. Kaur T. Org. Lett. 2011; 13: 1422
    • 3a Kim SK. Lee SH. Lee JY. Lee JY. Bartsch RA. Kim JS. J. Am. Chem. Soc. 2004; 126: 16499
    • 3b Choi JK. Kim SH. Yoon J. Lee K.-H. Bartsch RA. Kim JS. J. Org. Chem. 2006; 71: 8011
    • 3c Lee SH. Kim SK. Bok JH. Lee SH. Yoon J. Lee K. Kim JS. Tetrahedron Lett. 2005; 46: 8163
    • 3d Ni X.-L. Wang S. Zeng X. Tao Z. Yamato T. Org. Lett. 2010; 13: 552
    • 3e Park SY. Yoon JH. Hong CS. Souane R. Kim JS. Matthews SE. Vicens JA. J. Org. Chem. 2008; 73: 8212
    • 3f Souchon V. Maisonneuve S. David O. Leray I. Xie J. Valeur B. Photochem. Photobiol. Sci. 2008; 7: 1323
    • 3g Ho I.-T. Haung K.-C. Chung W.-S. Chem. Asian. J. 2011; 6: 2738
    • 3h Kumar M. Bhalla V. Dhir A. Babu JN. Dalton Trans. 2010; 39: 10116
    • 4a Kumar M. Kumar N. Bhalla V. Dalton Trans. 2012; 41: 10189
    • 4b Kumar M. Kumar N. Bhalla V. Dalton Trans. 2011; 40: 5170
    • 4c Fu Y. Mu L. Zeng X. Zhao J.-L. Redshaw C. Ni X.-L. Yamato T. Dalton Trans. 2013; 42: 3552
    • 4d Kumar M. Kumar R. Bhalla V. Org. Lett. 2011; 13: 366
    • 4e Huang L. Hou F. Cheng J. Xi P. Chen F. Bai D. Zeng Z. Org. Biomol. Chem. 2012; 10: 9634
    • 4f Kumar M. Kumar R. Bhalla V. Sharma PR. Kaur T. Qurishi Y. Dalton Trans. 2012; 41: 408
  • 5 Mewis RE. Archibald SJ. Coord. Chem. Rev. 2010; 254: 1686
  • 6 Forster C. Schubert M. Pietzsch HJ. Steinbach J. Molecules 2011; 16: 5228
  • 7 Simecek J. Zemek O. Hermann P. Wester H.-J. Notni J. ChemMedChem 2012; 7: 1375
  • 8 Barreto J. Venkatachalam TK. Joshi T. Kreher U. Forsyth CM. Reutens D. Spiccia L. Polyhedron 2013; 52: 128
    • 9a Broan CJ. Cole E. Jankowski KJ. Parker D. Pulukkody K. Boyce BA. Beeley NR. A. Millar K. Millican AT. Synthesis 1992; 63
    • 9b Roger M. Patinec V. Bourgeois M. Tripier R. Triki S. Handel H. Tetrahedron 2012; 68: 5637
  • 10 Biot C. Dessolin J. Ricard I. Dive D. J. Org. Chem. 2004; 69: 4678
  • 11 Chong H. Song HA. Birch N. Le T. Lim S. Ma X. Bioorg. Med. Chem. Lett. 2008; 18: 3436
  • 12 Zeng Z. Torriero AA. J. Bond AM. Spiccia L. Chem. Eur. J. 2010; 16: 9154
  • 13 Fujiwara M. Matsushita T. Wakita H. Analit. Sci. 1991; 7: 321
  • 14 Lee MH. Kim HJ. Yoon S. Park N. Kim JS. Org. Lett. 2008; 10: 213
  • 15 Tharamaraj V. Pitchumani K. Anal. Chim. Acta 2012; 751: 171
    • 16a Metivier R. Leray I. Valeur B. Chem. Commun. 2003; 996
    • 16b Metivier R. Leray I. Valeur B. Chem. Eur. J. 2004; 10: 4480
  • 17 Roper ED. Talonov VS. Gorbunova MG. Anal. Chem. 2007; 79: 1983
  • 18 Chen Q.-Y. Chen C.-F. Tetrahedron Lett. 2005; 46: 165
  • 19 Barta CA. Bayly SR. Read PW. Patrick BO. Thompson RC. Orvig C. Inorg. Chem. 2008; 47: 2280
    • 20a Averin AD. Shukhaev AV. Buryak AK. Denat F. Guilard R. Beletskaya IP. Tetrahedron Lett. 2008; 49: 3950
    • 20b Yakushev AA. Chernichenko NM. Anokhin MV. Averin AD. Buryak AK. Denat F. Beletskaya IP. Molecules 2014; 19: 940
    • 20c Uglov AN. Zubrienko GA. Abel AS. Averin AD. Maloshitskaya OA. Bessmertnykh-Lemeune A. Denat F. Beletskaya IP. Heterocycles 2014; 88: 1213
    • 20d Kobelev SM. Averin AD. Buryak AK. Denat F. Guilard R. Beletskaya IP. Heterocycles 2011; 82: 1447
    • 20e Kobelev SM. Averin AD. Buryak AK. Vovk AI. Kukhar VP. Denat F. Guilard R. Beletskaya IP. Heterocycles 2014; 90: 989
  • 21 Typical Experimental Procedure for the Synthesis of the Cryptands (14–16): A two-neck flask equipped with a magnetic stirrer and reflux condenser, flushed with anhyd argon, was charged with the corresponding triazacycloalkane derivative 810 (0.15–0.29 mmol), Pd(dba)2 (16 mol%), DavePhos (18 mol%), and absolute dioxane (10–15 mL). The mixture was stirred for 2–3 min, then the corresponding oxadiamine (0.15–0.29 mmol) was added followed by t-BuONa (0.45–0.9 mmol). The reaction mixture was stirred at reflux for 24 h, cooled to ambient temperature, the residue was filtered off, washed with CH2Cl2 (5 mL), combined organic fractions were evaporated in vacuo, and the residue was chromatographed on silica gel using a sequence of eluents CH2Cl2, CH2Cl2–MeOH (100:1–2:1), CH2Cl2–MeOH–NH3(aq) (100:20:1–10:4:1).
    5-[10,13,16-Trioxa-6,20-diaza-3(1,4)-triazacyclononane-1,5(1,3)-dibenzenacycloicosaphan-37-ylsulfonyl]-N,N-dimethylnaphthalenyl-1-amine (14a)
    : Compound 14a was obtained from compound 8 (140 mg, 0.2 mmo,), trioxadiamine 13a (44 mg, 0.2 mmol), in the presence of Pd(dba)2 (18 mg, 0.032 mmol), DavePhos (14 mg, 0.036 mmol), tBuONa (58 mg, 0.6 mmol) in dioxane (10 mL). Eluent: CH2Cl2–MeOH (3:1), yield: 37 mg (24%); yellow glassy solid. UV–vis (MeCN): λ max = 305 nm (logε 3.76), 340 (logε 3.48) nm. 1H NMR (400 MHz, CDCl3): δ = 1.85 (br quintet, 3 Jobs = 5.7 Hz, 4 H, CH2CH 2CH2), 2.86 (br s, 4 H, CH2N), 2.87 (s, 6 H, Me) 3.08–4.00 (br m, 12 H, CH2N, PhCH2N), 3.24 (br t, 3 Jobs = 4.8 Hz, 4 H, CH2NPh), 3.55–3.60 (br m, 8 H, CH2O), 3.61–3.66 (br m, 4 H, CH2O), 6.58 [br s, 2 H, H(Ph)], 6.60 [br d, 3 Jobs = 6.9 Hz, 2 H, H(Ph)], 6.84 [br s, 2 H, H2(Ph)], 7.10 [t, 3 J = 7.7 Hz, 2 H, H5(Ph)], 7.15 [d, 3 J = 7.6 Hz, 1 H, H6(Nf)], 7.49 [t, 3Jobs = 7.8 Hz, 1 H, H3(Nf)], 7.53 [t, 3 Jobs = 8.2 Hz, 1 H, H7(Nf)], 7.98 [br s, 1 H, H2(Nf)], 8.34 [d, 3 J = 7.6 Hz, 1 H, H8(Nf)], 8.54 [d, 3 J = 8.2 Hz, 1 H, H4(Nf)], two NH protons were not unambiguously assigned. 13C NMR (100.6 MHz, CDCl3): δ = 28.7 (2 × C, CCH2C), 41.4 (2 × C, CH2NPh), 45.3 (2 × C, Me), 47.0–57.0 (br m, 6 × C, CH2N), 61.7 (br s, 2 × C, Δν1/2 = 100 Hz, PhCH2N), 69.4 (2 × C, CH2O), 70.1 (2 × C, CH2O), 70.5 (2 × C, CH2O), 112.7 [br s, 2 × C, Δν1/2 = 60 Hz, CH(Ph)], 114.3 [br s, 2 × C, Δν1/2 = 30 Hz, CH(Ph)], 115.4 [1 × C, CH(Nf)], 118.1 [1 × C, CH(Nf)], 119.0 [br s, 2 × C, Δν1/2 = 30 Hz, CH(Ph)], 123.1 [1 × C, CH(Nf)], 128.2–131.0 [br m, 3 × CH(Nf), 2 × C5(Ph), 2 × C(Nf)], 134.4 [1 × C, C(Nf)], 137.5 [2 × C, C1(Ph)], 149.2 [br s, 2 × C, Δν1/2 = 20 Hz, C3(Ph)], 151.9 (1 × C, NC(Nf)]. HRMS (MALDI, dithranol, PEG-600): m/z [M + H]+ calcd for C42H59N6O5S: 759.4268; found: 759.4223.
    • 22a Averin AD. Uglov AN. Beletskaya IP. Chem. Lett. 2008; 37: 1074
    • 22b Averin AD. Ranyuk ER. Lukashev NV. Golub SL. Buryak AK. Beletskaya IP. Tetrahedron Lett. 2008; 49: 1188
    • 22c Abel AS. Averin AD. Beletskaya IP. New J. Chem. 2016; 40: 5818
    • 23a Beletskaya IP. Bessmertnykh AG. Averin AD. Denat F. Guilard R. Eur. J. Org. Chem. 2005; 281
    • 23b Averin AD. Shukhaev AV. Golub SL. Buryak AK. Beletskaya IP. Synthesis 2007; 2995
  • 24 Abel AS. Mitrofanov AY. Rousselin Y. Denat F. Bessmertnykh-Lemeune A. Averin AD. Beletskaya IP. ChemPlusChem 2016; 81: 35
  • 25 Li Y.-H. Chan L.-M. Tyer L. Mooly RT. Himel CM. Hercules DM. J. Am. Chem. Soc. 1975; 97: 3118
  • 26 The experiments of metal cations detection were conducted as follows. The solutions of Zn(II), Cd(II), Pb(II), Hg(II), Ag(I), Cu(II), Co(II), Ni(II), Fe(II), Mn(II), Mg(II), Ba(II), Ca(II), Al(III), Li(I) Na(I), K(I) perchlorates and In(III), Y(III), Ga(III) nitrates were dissolved in MeCN (UHPLC grade) to make concentrations c = 0.01 M [in the case of Hg(II) perchlorate 0.005 M]. Macrocyclic ligands 1417 were also dissolved in MeCN (UHPLC grade) to make concentrations c = 3.3 × 10–5 M. The solution of metal salt was added directly to the solution of the ligand in the spectrophotometric cuvette (1, 2, 5 equiv) and UV–vis and fluorescent spectra (excitation at 340 nm) were recorded after each addition.
    • 27a Warmke H. Wiczk W. Ossowski T. Talanta 2000; 52: 449
    • 27b Sulowska H. Wiczk W. Młodzianowski J. Przyborowska M. Ossowski T. J. Photochem. Photobiol. A: Chem. 2002; 150: 249