Synthesis 2018; 50(19): 3843-3861
DOI: 10.1055/s-0037-1609583
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Copper-Catalyzed Asymmetric Hydroboration of Electron-Deficient Alkenes: Methodologies and Mechanism

Jing-Biao Chen
Centre for Sustainable Chemical Processes, Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK   Email: andy.whiting@durham.ac.uk
,
Centre for Sustainable Chemical Processes, Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK   Email: andy.whiting@durham.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 11 June 2018

Accepted: 15 June 2018

Publication Date:
23 July 2018 (online)


Abstract

The efficient synthesis of enantioenriched organoboron compounds has been recognized as an important topic in recent years. As an update review, this article aims to select key achievements in copper-catalyzed, electron-deficient alkene enantioselective hydroboration methodologies since the beginning of 2017. In addition, it covers relevant mechanistic investigations developed over the last six years, as well as total synthesis applications for preparing 1,3-diols as important medicinal intermediates.

1 Introduction

2 Methodologies for Copper-Catalyzed Hydroboration

2.1 α,β-Unsaturated Ketones and Imines

2.2 α,β-Unsaturated Esters and Cyanides

2.3 Aryl Alkenes and Alkyl Alkenes

3 Mechanistic Investigations on the Copper-Catalyzed Hydroboration

3.1 A Cu–BX2 Intermediate

3.1.1 Experimental Analysis

3.1.2 Borylative Difunctionalization Methodologies

3.1.3 Density Functional Theory

3.2 A Cu–H Intermediate

3.3 Other Mechanistic Proposals

4 Synthetic Applications: Chiral 1,3-Diols

5 Conclusions and Outlook

 
  • References

    • 1a Brown HC. Ramachandran PV. Pure Appl. Chem. 1994; 66: 201
    • 1b Matteson DS. J. Organomet. Chem. 1999; 581: 51
    • 1c Boronic Acids . Hall DG. Wiley-VCH; Weinheim: 2011
    • 1d Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6723
    • 1e Kaur P. Khatik GL. Nayak SK. Curr. Org. Synth. 2017; 14: 665

      For applications in pharmaceuticals and bioactive molecules, see:
    • 2a Woodward RB. Au-Yeung BW. Balaram P. Browne LJ. Ward DE. Card PJ. Chen CH. J. Am. Chem. Soc. 1981; 103: 3213
    • 2b Flores-Parra A. Contreras R. Coord. Chem. Rev. 2000; 196: 85
    • 2c Yang W. Gao X. Wang B. Med. Res. Rev. 2003; 23: 346
    • 2d Tobert JA. Nat. Rev. Drug Discovery 2003; 3: 178
    • 2e Petasis NA. Aust. J. Chem. 2007; 60: 795
    • 2f Kumar RN. Meshram HM. Tetrahedron Lett. 2011; 52: 1003
    • 2g Smoum R. Rubinstein A. Dembitsky VM. Srebnik M. Chem. Rev. 2012; 112: 4156

      For selected reviews on borylation and its transformations, see:
    • 3a Ishiyama T. Miyaura N. J. Organomet. Chem. 2000; 611: 392
    • 3b Crudden CM. Glasspoole BW. Lata CJ. Chem. Commun. 2009; 6704
    • 3c Hall DG. Lee JC. H. Ding J. Pure Appl. Chem. 2012; 84: 2263
    • 3d Lennox AJ. J. Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 3e Leonori D. Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 3f Xu L. Zhang S. Li P. Chem. Soc. Rev. 2015; 44: 8848
    • 3g Leonori D. Aggarwal VK. Angew. Chem. Int. Ed. 2015; 54: 1082
    • 3h Lee A.-L. Org. Biomol. Chem. 2016; 14: 5357
    • 3i Chatterjee N. Goswami A. Adv. Synth. Catal. 2017; 359: 358
    • 3j Scharnagl FK. Bose SK. Marder TB. Org. Biomol. Chem. 2017; 15: 1738
    • 3k Yang J.-M. Li Z.-Q. Zhu S.-F. Chin. J. Org. Chem. 2017; 37: 2481
    • 3l Armstrong RJ. Aggarwal VK. Synthesis 2017; 49: 3323
    • 3m Willemse T. Schepens W. van Vlijmen HW. T. Maes BU. W. Ballet S. Catalysts 2017; 7: 74
    • 3n Nallagonda R. Padala K. Masarwa A. Org. Biomol. Chem. 2018; 16: 1050
    • 4a Dang L. Lin Z. Marder TB. Chem. Commun. 2009; 3987
    • 4b Calow AD. J. Whiting A. Org. Biomol. Chem. 2012; 10: 5485

      For selected reviews relevant to the topic of borylation, see:
    • 5a Ishiyama T. Miyaura N. Chem. Rec. 2004; 3: 271
    • 5b Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
    • 5c Cid J. Gulyás H. Carbό JJ. Fernández E. Chem. Soc. Rev. 2012; 41: 3558
    • 5d Yun J. Asian J. Org. Chem. 2013; 2: 1016
    • 5e Westcott SA. Fernández E. Adv. Heterocycl. Chem. 2015; 63: 39
    • 5f Hensel A. Oestreich M. Top. Organomet. Chem. 2015; 58: 135
    • 5g Tsuji Y. Fujihara T. Chem. Rec. 2016; 16: 2294
    • 5h Yoshida H. Chem. Rec. 2016; 16: 419
    • 5i Neeve EC. Geier SJ. Mkhalid IA. I. Westcott SA. Marder TB. Chem. Rev. 2016; 116: 9091
    • 5j Collins BS. L. Wilson CM. Myers EL. Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
    • 5k Lawson JR. Melen RL. Inorg. Chem. 2017; 56: 8627
    • 5l Lawson JR. Melen RL. Organomet. Chem. 2017; 41: 1
    • 5m Fujihara T. Tsuji Y. Synthesis 2018; 50: 1737
    • 5n Verma PK. Shegavi ML. Bose SK. Geetharani K. Org. Biomol. Chem. 2018; 16: 857
    • 5o Yan G. Huang D. Wu X. Adv. Synth. Catal. 2018; 360: 1040

      For selected reviews on diboration, see:
    • 6a Marder TB. Norman NC. Top. Catal. 1998; 5: 63
    • 6b Dembitsky VM. Ali HA. Srebnik M. Appl. Organomet. Chem. 2003; 17: 327
    • 6c Beletskaya I. Moberg C. Chem. Rev. 2006; 106: 2320
    • 6d Bonet A. Sole C. Gulyás H. Fernández E. Org. Biomol. Chem. 2012; 10: 6621
    • 6e Zhao F. Jia X. Li P. Zhao J. Zhou Y. Wang J. Liu H. Org. Chem. Front. 2017; 4: 2235

      For selected reviews on borylative bifunctionalization, see:
    • 7a Suginome M. Ito Y. J. Organomet. Chem. 2003; 680: 43
    • 7b Oestreich M. Hartmann E. Mewald M. Chem. Rev. 2013; 113: 402
    • 7c Buñuel E. Cárdenas DJ. Eur. J. Org. Chem. 2016; 5446
    • 7d Cuenca AB. Shishido R. Ito H. Fernández E. Chem. Soc. Rev. 2017; 46: 415

      For selected reviews on C–H borylation, see:
    • 8a Ishiyama T. Miyaura N. J. Organomet. Chem. 2003; 680: 3
    • 8b Ishiyama T. Miyaura N. Pure Appl. Chem. 2006; 78: 1369
    • 8c Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
    • 8d Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 8e Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 8f Ros A. Fernández R. Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 8g Shinokubo H. Proc. Jpn. Acad., Ser. B 2014; 90: 1
    • 8h Geier SJ. Westcott SA. Rev. Inorg. Chem. 2015; 35: 69
    • 8i Xu L. Wang G. Zhang S. Wang H. Wang L. Liu L. Jiao J. Li P. Tetrahedron 2017; 73: 7123

      For selected reviews on C–X borylation, see:
    • 9a Murata M. Heterocycles 2012; 85: 1795
    • 9b Chow WK. Yuen OY. Choy PY. So CM. Lau CP. Wong WT. Kwong FY. RSC Adv. 2013; 3: 12518
    • 9c Kubota K. Iwamoto H. Ito H. Org. Biomol. Chem. 2017; 15: 285

      For selected literature on Brown hydroboration, see:
    • 10a Brown HC. Zweifel G. J. Am. Chem. Soc. 1961; 83: 486
    • 10b Brown HC. Singaram B. Acc. Chem. Res. 1988; 21: 287
    • 10c Beletskaya I. Pelter A. Tetrahedron 1997; 53: 4957
    • 10d Crudden CM. Edwards D. Eur. J. Org. Chem. 2003; 4695
    • 10e Carroll A.-M. O’Sullivan TP. Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 10f Vogels CM. Westcott SA. Curr. Org. Chem. 2005; 9: 687
    • 10g Huang S. Xie Y. Wu S. Jia M. Wang J. Xu W. Fang H. Curr. Org. Synth. 2013; 10: 683
    • 10h Fujihara T. Semba K. Terao J. Tsuji Y. Catal. Sci. Technol. 2014; 4: 1699
    • 10i Semba K. Fujihara T. Terao J. Tsuji Y. Tetrahedron 2015; 71: 2183
    • 10j Liu Q. Tian B. Tian P. Tong X. Lin G.-Q. Chin. J. Org. Chem. 2015; 35: 1
    • 10k Ito H. Pure Appl. Chem. 2018; 90: 703

      For selected reviews on alkene hydroboration, see:
    • 11a Lillo V. Bonet A. Fernández E. Dalton Trans. 2009; 2899
    • 11b Thomas SP. Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1896
    • 11c Stavber G. Časar Z. ChemCatChem 2014; 6: 2162
    • 11d Liu Y. Zhang W. Chin. J. Org. Chem. 2016; 36: 2249
    • 11e Chen J. Lu Z. Org. Chem. Front. 2018; 5: 260

      For selected reviews on 1,3-diol synthesis and relevant strategies, see:
    • 12a Masamune S. Choy W. Petersen JS. Sita LR. Angew. Chem., Int. Ed. Engl. 1985; 24: 1
    • 12b Rychnovsky SD. Rogers BN. Richardson TI. Acc. Chem. Res. 1998; 31: 9
    • 12c Bartoli G. Bartolacci M. Giuliani A. Marcantoni E. Massaccesi M. Eur. J. Org. Chem. 2005; 2867
    • 12d Bode SE. Wolberg M. Müller M. Synthesis 2006; 557
    • 12e Bonet A. Sole C. Gulyás H. Fernández E. Curr. Org. Chem. 2010; 14: 2531
    • 12f Paterson I. Dalby SM. Maltas P. Isr. J. Chem. 2011; 51: 406
    • 12g Alfaro R. Parra A. Alemán J. Tortosa M. Synlett 2013; 24: 804
    • 12h Barreiro EM. Adrio LA. Hii KK. Brazier JB. Eur. J. Org. Chem. 2013; 1027
    • 12i Joannou MV. Moyer BS. Meek SJ. J. Am. Chem. Soc. 2015; 137: 6176
    • 13a Ibrahem I. Breistein P. Cόrdova A. Angew. Chem. Int. Ed. 2011; 50: 12036
    • 13b Solé C. Tatla A. Mata JA. Whiting A. Gulyás H. Fernández E. Chem. Eur. J. 2011; 17: 14248
    • 13c Solé C. Whiting A. Gulyás H. Fernández E. Adv. Synth. Catal. 2011; 353: 376
    • 13d Ibrahem I. Breistein P. Cόrdova A. Angew. Chem. Int. Ed. 2011; 50: 12036
    • 13e Calow AD. J. Batsanov AS. Fernández E. Solé C. Whiting A. Chem. Commun. 2012; 48: 11401
    • 13f Kitanosono T. Xu P. Kobayashi S. Chem. Commun. 2013; 49: 8184
    • 13g Calow AD. J. Batsanov AS. Pujol A. Solé C. Fernández E. Whiting A. Org. Lett. 2013; 15: 4810
    • 13h Calow AD. J. Fernández E. Whiting A. Org. Biomol. Chem. 2014; 12: 6121
    • 13i Kitanosono T. Xu P. Isshiki S. Zhu L. Kobayashi S. Chem. Commun. 2014; 50: 9336
    • 13j He Z.-T. Zhao Y.-S. Tian P. Wang C.-C. Dong H.-Q. Lin G.-Q. Org. Lett. 2014; 16: 1426
    • 13k Pujol A. Calow AD. J. Batsanov AS. Whiting A. Org. Biomol. Chem. 2015; 13: 5122
    • 13l Pujol A. Whiting A. J. Org. Chem. 2017; 82: 7265
  • 14 Jiang Q. Guo T. Yu Z. J. Org. Chem. 2017; 82: 1951
  • 15 Wen L. Yue Z. Zhang H. Chong Q. Meng F. Org. Lett. 2017; 19: 6610
  • 16 Tarrieu R. Dumas A. Thongpaen J. Vives T. Roisnel T. Dorcet V. Crévisy C. Baslé O. Mauduit M. J. Org. Chem. 2017; 82: 1880
  • 17 Yasue R. Miyauchi M. Yoshida K. Adv. Synth. Catal. 2017; 359: 255
  • 18 Chen L. Zou X. Zhao H. Xu S. Org. Lett. 2017; 19: 3676
  • 19 Jana A. Trzybiński D. Woźniak K. Grela K. Chem. Eur. J. 2018; 24: 891
  • 20 Green JC. Joannou MV. Murray SA. Zanghi JM. Meek SJ. ACS Catal. 2017; 7: 4441
    • 21a Kong D. Han S. Wang R. Li M. Zi G. Hou G. Chem. Sci. 2017; 8: 4558
    • 21b Kong D. Han S. Zi G. Hou G. Zhang J. J. Org. Chem. 2018; 83: 1924
  • 22 Zhang Y. Wang M. Cao P. Liao J. Acta Chim. Sinica 2017; 75: 794
    • 23a Lee Y. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
    • 23b Jia T. Cao P. Wang B. Lou Y. Yin X. Wang M. Liao J. J. Am. Chem. Soc. 2015; 137: 13760
    • 23c Lee J. Radomkit S. Torker S. del Pozo J. Hoveyda AH. Nat. Chem. 2017; 10: 99
    • 23d Huang C. Liu B. Chem. Commun. 2010; 46: 5280
    • 23e Bai W.-J. Green JC. Pettus TR. R. J. Org. Chem. 2012; 77: 379
  • 24 Chen B. Cao P. Liao Y. Wang M. Liao J. Org. Lett. 2018; 20: 1346
    • 25a Corberán R. Mszar NW. Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
    • 25b Wang Z. He X. Zhang R. Zhang G. Xu G. Zhang Q. Xiong T. Zhang Q. Org. Lett. 2017; 19: 3067
    • 25c Wen L. Cheng F. Li H. Zhang S. Hong X. Meng F. Asian J. Org. Chem. 2018; 7: 103
  • 26 Cai Y. Yang X.-T. Zhang S.-Q. Li F. Li Y.-Q. Ruan L.-X. Hong X. Shi S.-L. Angew. Chem. Int. Ed. 2018; 57: 1376
  • 27 Kato K. Hirano K. Miura M. Chem. Eur. J. 2018; 24: 5775
  • 28 Jang WJ. Song SM. Moon JH. Lee JY. Yun J. J. Am. Chem. Soc. 2017; 139: 13660

    • For selected examples on alkoxide or hydroxide base anion catalyzed alkene hydroboration, see:
    • 29a Thorpe SB. Calderone JA. Santos WL. Org. Lett. 2012; 14: 1918
    • 29b Sanz X. Lee GM. Pubill-Ulldemolins C. Bonet A. Gulyás H. Westcott SA. Bo C. Fernández E. Org. Biomol. Chem. 2013; 11: 7004
    • 29c Cid J. Carbό JJ. Fernández E. Chem. Eur. J. 2014; 20: 3616
    • 29d La Cascia E. Sanz X. Bo C. Whiting A. Fernández E. Org. Biomol. Chem. 2015; 13: 1328
    • 29e Yang K. Song Q. Green Chem. 2016; 18: 932
    • 29f Wu Y. Shan C. Ying J. Su J. Zhu J. Liu LL. Zhao Y. Green Chem. 2017; 19: 4169
    • 29g Yamamoto E. Shishido R. Seki T. Ito H. Organometallics 2017; 36: 3019
    • 29h Deng CM. Ma YF. Wen YM. ChemistrySelect 2018; 3: 1202
    • 29i Huang X. Hu J. Wu M. Wang J. Peng Y. Song G. Green Chem. 2018; 20: 255
    • 29j Yan L. Meng Y. Haeffner F. Leon RM. Crockett MP. Morken JP. J. Am. Chem. Soc. 2018; 140: 3663

      For selected examples of methodologies proposing ‘Cu–BX2’ as borylation intermediates, see:
    • 30a Sasaki Y. Zhong C. Sawamura M. Ito H. J. Am. Chem. Soc. 2010; 132: 1226
    • 30b Zhao L. Ma Y. Duan W. He F. Chen J. Song C. Org. Lett. 2012; 14: 5780
    • 30c Kitanosono T. Kobayashi S. Asian J. Org. Chem. 2013; 2: 961
    • 30d Tian B. Liu Q. Tong X. Tian P. Lin G.-Q. Org. Chem. Front. 2014; 1: 1116
    • 30e Lee H. Lee BY. Yun J. Org. Lett. 2015; 17: 764
    • 30f Wen Y. Xie J. Deng C. Li C. J. Org. Chem. 2015; 80: 4142
    • 30g Iwamoto H. Kubota K. Ito H. Chem. Commun. 2016; 52: 5916
    • 30h Kerchner HA. Montgomery J. Org. Lett. 2016; 18: 5760
    • 30i Mazzacano TJ. Leon NJ. Waldhart GW. Mankad NP. Dalton Trans. 2017; 46: 5518
    • 30j Kuang Z. Li B. Song Q. Chem. Commun. 2018; 54: 34
    • 31a Semba K. Shinomiya M. Fujihara T. Terao J. Tsuji Y. Chem. Eur. J. 2013; 19: 7125
    • 31b Kitanosono T. Xu P. Kobayashi S. Chem. Asian J. 2014; 9: 179
  • 32 Calow AD. J. Solé C. Whiting A. Fernández E. ChemCatChem 2013; 5: 2233

    • For selected recent works on copper-catalyzed borylative difunctionalization, see:
    • 33a Kubota K. Yamamoto E. Ito H. J. Am. Chem. Soc. 2013; 135: 2635
    • 33b Itoh T. Matsueda T. Shimizu Y. Kanai M. Chem. Eur. J. 2015; 21: 15955
    • 33c Hornillos V. Vila C. Otten E. Feringa BL. Angew. Chem. Int. Ed. 2015; 54: 7867
    • 33d Jia T. Cao P. Wang D. Lou Y. Liao J. Chem. Eur. J. 2015; 21: 4918
    • 33e Yang Y. Angew. Chem. 2016; 128: 353
    • 33f Boreux A. Indukuri K. Gagosz F. Riant O. ACS Catal. 2017; 7: 8200
    • 33g Fujihara T. Sawada A. Yamaguchi T. Tani Y. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2017; 56: 1539
    • 33h Kato K. Hirano K. Miura M. J. Org. Chem. 2017; 82: 10418
    • 33i Zuo Y.-J. Chang X.-T. Hao Z.-M. Zhong C.-M. Org. Biomol. Chem. 2017; 15: 6323
    • 33j Gong T.-J. Yu S.-H. Li K. Su W. Lu X. Xiao B. Fu Y. Chem. Asian J. 2017; 12: 2884

      For selected relevant literature on DFT studies of catalytic borylation of alkenes, see:
    • 34a Zhao H. Lin Z. Marder TB. J. Am. Chem. Soc. 2006; 128: 15637
    • 34b Lam KC. Lin Z. Marder TB. Organometallics 2007; 26: 3149
    • 34c Dang L. Zhao H. Lin Z. Marder TB. Organometallics 2007; 26: 2824
    • 34d Dang L. Zhao H. Lin Z. Marder TB. Organometallics 2008; 27: 1178
    • 34e Zhao H. Dang L. Marder TB. Lin Z. J. Am. Chem. Soc. 2008; 130: 5586
    • 34f Dang L. Lin Z. Marder TB. Organometallics 2008; 27: 4443
    • 34g Kleeberg C. Dang L. Lin Z. Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350
    • 34h Tan D.-H. Lin E. Ji W.-W. Zeng Y.-F. Fan W.-X. Li Q. Gao H. Wang H. Adv. Synth. Catal. 2018; 360: 1032
    • 35a Yang C.-T. Zhang Z.-Q. Tajuddin H. Wu C.-C. Liang J. Liu J.-H. Fu Y. Czyzewska M. Steel PG. Marder TB. Liu L. Angew. Chem. Int. Ed. 2012; 51: 528
    • 35b Xu Z.-Y. Jiang Y.-Y. Su W. Yu H.-Z. Fu Y. Chem. Eur. J. 2016; 22: 14611
    • 36a Yuan W. Zhang X. Yu Y. Ma S. Chem. Eur. J. 2013; 19: 7193
    • 36b Meng F. McGrath KP. Hoveyda AH. Nature 2014; 513: 367
    • 37a Chen J.-B. Jia Y.-X. Org. Biomol. Chem. 2017; 15: 3550
    • 37b Kubota K. Hayama K. Iwamoto H. Ito H. Angew. Chem. Int. Ed. 2015; 54: 8809
    • 37c Kubota K. Watanabe Y. Ito H. Adv. Synth. Catal. 2016; 358: 2379
    • 37d Kubota K. Jin M. Ito H. Organometallics 2016; 35: 1376
    • 38a Isegawa M. Sameera WM. C. Sharma AK. Kitanosono T. Kato M. Kobayashi S. Morokuma K. ACS Catal. 2017; 7: 5370
    • 38b Zhu L. Kitanosono T. Xu P. Kobayashi S. Chem. Commun. 2015; 51: 11685

      For selected recent methodological and mechanical investigations on the hydrocupration of alkenes, see:
    • 39a Gribble MW. Pirnot MT. Bandar JS. Liu RY. Buchwald SL. J. Am. Chem. Soc. 2017; 139: 2192
    • 39b Liang T. Jiang L. Gan M. Su X. Li Z. Chin. J. Org. Chem. 2017; 37: 3096
    • 39c Zhou Y. Bandar JS. Liu RY. Buchwald SL. J. Am. Chem. Soc. 2018; 140: 606
    • 39d Yang Y. Shi S.-L. Niu D. Liu P. Buchwald SL. Science 2015; 349: 62
    • 39e Kim H. Yun J. Adv. Synth. Catal. 2010; 352: 1881
  • 40 Won J. Noh D. Yun J. Lee JY. J. Phys. Chem. A 2010; 114: 12112
  • 41 Schmid SC. Van Hoveln R. Rigoli JW. Schomaker JM. Organometallics 2015; 34: 4164
  • 42 Xi Y. Hartwig JF. J. Am. Chem. Soc. 2017; 139: 12758
  • 43 Lu G. Liu RY. Yang Y. Fang C. Lambrecht DS. Buchwald SL. Liu P. J. Am. Chem. Soc. 2017; 139: 16548

    • For selected examples on background reactions in alkene hydroboration, see:
    • 44a Mömming CM. Frömel S. Kehr G. Fröhlich R. Grimme S. Erker G. J. Am. Chem. Soc. 2009; 131: 12280
    • 44b Rucker RP. Whittaker AM. Dang H. Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
    • 44c Bailey JO. Singleton DA. J. Am. Chem. Soc. 2017; 139: 15710
    • 44d Jin S. Nguyen VT. Dang HT. Nguyen DP. Arman HD. Larionov OV. J. Am. Chem. Soc. 2017; 139: 11365
    • 44e Juhl M. Laursen SL. R. Huang Y. Nielsen DU. Daasbjerg K. Skrydstrup T. ACS Catal. 2017; 7: 1392
    • 44f Rarig R.-AF. Nelson JM. Vedejs E. J. Org. Chem. 2017; 82: 12757
    • 44g Nagashima Y. Sasaki K. Suto T. Sato T. Chida N. Chem. Asian J. 2018; 13: 1024
    • 44h Sanzone JR. Hu CT. Woerpel KA. J. Am. Chem. Soc. 2017; 139: 8404
    • 44i Meyer D. Renaud P. Angew. Chem. Int. Ed. 2017; 56: 10858

      For selected examples on NHC activation of diboron compounds, see:
    • 45a Lee K.-S. Zhugralin AR. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 7253
    • 45b Wen K. Chen J. Gao F. Bhadury PS. Fan E. Sun Z. Org. Biomol. Chem. 2013; 11: 6350
    • 45c Palau-Lluch G. Sanz X. La Cascia E. Civit MG. Miralles N. Cuenca AB. Fernández E. Pure Appl. Chem. 2015; 87: 181
    • 45d Pietsch S. Neeve EC. Apperley DC. Bertermann R. Mo F. Qiu D. Cheung MS. Dang L. Wang J. Radius U. Lin Z. Kleeberg C. Marder TB. Chem. Eur. J. 2015; 21: 7082
    • 45e Eichhorn AF. Kuehn L. Marder TB. Radius U. Chem. Commun. 2017; 53: 11694
    • 45f Eck M. Würtemberger-Pietsch S. Eichhorn A. Berthel JH. J. Bertermann R. Paul US. D. Schneider H. Friedrich A. Kleeberg C. Radius U. Marder TB. Dalton Trans. 2017; 46: 3661

      For selected examples on the radical mechanism of the borylation of alkenes, see:
    • 46a Iwamoto H. Akiyama S. Hayama K. Ito H. Org. Lett. 2017; 19: 2614
    • 46b Cui J. Wang H. Song J. Chi X. Meng L. Liu Q. Zhang D. Dong Y. Liu H. Org. Biomol. Chem. 2017; 15: 8508
    • 46c Ren S.-C. Zhang F.-L. Qi J. Huang Y.-S. Xu A.-Q. Yan H.-Y. Wang Y.-F. J. Am. Chem. Soc. 2017; 139: 6050
    • 46d Zhang L. Jiao L. Chem. Sci. 2018; 9: 2711
  • 47 Kumar RN. Meshram HM. Tetrahedron Lett. 2011; 52: 1003
  • 48 Luo Y. Roy ID. Madec AG. E. Lam HW. Angew. Chem. Int. Ed. 2014; 53: 4186
    • 49a Chen I.-H. Yin L. Itano W. Kanai M. Shibasaki M. J. Am. Soc. Chem. 2009; 131: 11664
    • 49b Welle A. Cirriez V. Riant O. Tetrahedron 2012; 68: 3435
    • 49c Cho HY. Morken JP. J. Am. Chem. Soc. 2010; 132: 7576
    • 49d Yu Z. Ely RJ. Morken JP. Angew. Chem. 2014; 126: 9786
  • 50 Medina C. Carter KP. Miller M. Clark TB. O’Neil GW. J. Org. Chem. 2013; 78: 9093
    • 51a Ito Y. Sawamura M. Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
    • 51b Yadav JS. Hossain SkS. Madhu M. Mohapatra DK. J. Org. Chem. 2009; 74: 8822
    • 51c Yadav JS. Rajender V. Rao YG. Org. Lett. 2010; 12: 348
    • 51d Yadav JS. Rao KV. R. Ravindar K. Reddy BV. S. Eur. J. Org. Chem. 2011; 58
  • 52 Fordred PS. Bull SD. Tetrahedron Lett. 2013; 54: 27