Synlett 2018; 29(18): 2342-2361
DOI: 10.1055/s-0037-1609584
account
© Georg Thieme Verlag Stuttgart · New York

Design and Synthesis of Aromatics through [2+2+2] Cyclotrimerization

Sambasivarao Kotha*
a  Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India   Email: [email protected]
,
Kakali Lahiri*
b  Department of Chemistry, V. K. Krishna Menon College of Commerce & Economics, Bhandup East, Mumbai 400042, India
,
Gaddamedi Sreevani
a  Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India   Email: [email protected]
› Author Affiliations
S.K. thanks the Department of Science and Technology (DST), New Delhi for the financial support (EMR/2015/002053). G.S. thanks the CSIR-New Delhi for the award of a research fellowship. S.K. thanks the DST for the award of a J. C. Bose fellowship (SR/S2/JCB-33/2010) and Praj industries for a Chair Professor (green chemistry).
Further Information

Publication History

Received: 12.02.2018

Accepted after revision: 18.06.2018

Publication Date:
08 August 2018 (online)


Abstract

The [2+2+2] cycloaddition reaction is a useful tool to realize unusual chemical transformations which are not achievable by traditional methods. Here, we report our work during the past two decades that involve utilization of transition-metal complexes in a [2+2+2] cyclotrimerization reaction. Several key “building blocks” were assembled by a [2+2+2] cycloaddition approach and they have been further expanded by other synthetic transformations to design unusual amino acids and peptides, diphenylalkanes, bis- and trisaryl benzene derivatives, annulated benzocycloalkanes, spirocycles, and spirooxindole derivatives. Furthermore, we have also discussed about alkyne surrogates, environmentally friendly, and stereoselective [2+2+2] cycloaddition reactions. Application of the [2+2+2] cycloaddition reaction in total synthesis is also covered. In this review we also included others work to give a balanced view of the recent developments in the area of [2+2+2] cycloaddition.

1 Introduction

2 Unusual Amino Acids and Peptides

3 Heteroanalogues of Indane

4 Diphenylalkane Derivatives

5 Multi-Armed Aryl Benzene Derivatives

6 Annulated Benzocycloalkanes

7 Spirocycles

8 Selectivity in [2+2+2] Cycloaddition of Alkynes

9 [2+2+2] Cycloaddition Reactions under Environmentally Friendly Conditions

10 Alkyne Surrogates

11 Domino Reactions involving a [2+2+2] Cycloaddition

12 Biologically Important Targets/Total Synthesis

13 Conclusions

 
  • References

  • 2 Reppe W. Schweckendiek WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
    • 3a Babazadeh M. Soleimani-Amiri S. Vessally E. Hosseiniah A. Edjlali L. RSC Adv. 2017; 7: 43716
    • 3b Tanaka K. Transition Metal-Mediated Aromatic Ring Construction. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. John Wiley & Sons; Hoboken: 2016: 587-600
    • 3c Hapke M. Tetrahedron Lett. 2016; 57: 5719
    • 3d Okamoto S. Sugiyama Y. Synlett 2013; 24: 1044
    • 3e Shibata Y. Tanaka K. Synthesis 2012; 323
    • 3f Broere DL. J. Ruijter E. Synthesis 2012; 2639
    • 3g Tanaka K. Heterocycles 2012; 85: 1017
    • 3h Weding N. Hapke M. Chem. Soc. Rev. 2011; 40: 4525
    • 3i Domínguez G. Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 3j Shaaban MR. El-Sayed R. Elwahy AH. M. Tetrahedron 2011; 67: 6095
    • 3k Inglesby PA. Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 3l Galan BR. Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
    • 3m Leboeuf D. Gandon V. Malacria M. Transition Metal-Mediated [2+2+2] Cycloadditions. In Handbook of Cyclization Reactions. Vol. 1. Ma S. Wiley-VCH; Weinheim: 2009: 367-406
    • 3n Hess W. Treutwein J. Hilt G. Synthesis 2008; 3537
    • 3o Agenet N. Gandon V. Buisine O. Slowinski F. Malacria M. Cotrimerization of Acetylenic Compounds. In Organic Reactions. Vol. 68, 1–302. RajanBabu TV. John Wiley & Sons; Hoboken: 2007
    • 3p Heller B. Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 3q Chopade PR. Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 3r Gandon V. Aubert C. Malacria M. Chem. Commun. 2006; 2209
    • 3s Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
    • 3t Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 3u Varela JA. Saá C. Chem. Rev. 2003; 103: 3787
    • 3v Domínguez G. Péter-Castells J. Chem. Eur. J. 2016; 22: 6720
    • 5a Kotha S. Goyal D. Chavan AS. J. Org. Chem. 2013; 78: 12288
    • 5b Kotha S. Goyal D. Thota N. Sreenivas V. Eur. J. Org. Chem. 2012; 1843
    • 5c Kotha S. Lahiri K. Curr. Med. Chem. 2005; 12: 849
    • 5d Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
    • 5e Schiller PW. Weltrowaska G. Nguyen TM. -D. Lemieux C. Chung NN. Marsden BJ. Wilkes BC. J. Med. Chem. 1991; 34: 3125
    • 5f Kotha S. Acc. Chem. Res. 2003; 36: 342
    • 7a Kotha S. Ganesh T. Ghosh AK. Bioorg. Med. Chem. Lett. 2000; 10: 1755
    • 7b Kotha S. Khedkar P. Chem. Rev. 2012; 112: 1650
  • 8 Shchetnikov GT. Osipov SN. Bruneau C. Dixneuf PH. Synlett 2008; 578
  • 9 Garcia L. Pla-Quintana A. Roglans A. Org. Biomol. Chem. 2009; 7: 5020
  • 11 Tahara Y. Obinata S. Kanyiva KS. Shibata T. Mandi A. Taniguchi T. Monde K. Eur. J. Org. Chem. 2016; 1405
  • 12 Obinata S. Tahara Y. Kanyiva KS. Shibata T. Heterocycles 2017; 95: 1121
    • 13a Kotha S. Mishra S. Krishna NG. Vijayalakshmi B. Saifuddin M. Devunuri N. Heterocycles 2016; 93: 185
    • 13b Kotha S. Misra S. Krishna NG. Nagaraju D. Heterocycles 2010; 80: 847
    • 13c Kotha S. Sreenivasachary N. Bioorg. Med. Chem. Lett. 2000; 10: 1413
    • 13d Kotha S. Sreenivasachary N. Chem. Commun. 2000; 503
    • 14a Kotha S. Dipak MK. Tetrahedron 2012; 68: 397
    • 14b Kotha S. Lahiri K. Synlett 2007; 2767
    • 14c Zotova MA. Vorobyeva DV. Dixneuf PH. Bruneau C. Osipov SN. Synlett 2013; 24: 1517
  • 15 Kotha S. Banerjee S. Synthesis 2007; 1015
  • 16 Kotha S. Mohanraja K. Durani S. Chem. Commun. 2000; 1909
    • 17a Kotha S. Sreevani G. Heterocycles 2017; 95: 1204
    • 17b Kotha S. Sreevani G. ChemistrySelect 2017; 2: 10804
    • 17c Kotha S. Sreevani G. ACS Omega 2018; 3: 1850
    • 18a Witulski B. Stengel T. Fernández-Hernández JM. Chem. Commun. 2000; 1965
    • 18b Feng C. Wang X. Wang B.-Q. Zhao K.-Q. Hu P. Shi Z.-J. Chem. Commun. 2012; 48: 356
    • 18c Wang Y. Hsu W. Ho F. Li C. Wang C. Chen H. Tetrahedron 2017; 73: 7210
    • 19a Ibuki E. Ozasa S. Fujioka Y. Okada M. Yakugaku Zasshi 1980; 100: 718
    • 19b Kotha S. Khedkar P. Eur. J. Org. Chem. 2009; 730
    • 20a Kotha S. Seema V. Mobin SM. Synthesis 2011; 1581
    • 20b Kotha S. Mandal K. Chem. Asian. J. 2009; 4: 354
    • 20c Kotha S. Lahiri K. Eur. J. Org. Chem. 2007; 1221
    • 20d Kotha S. Lahiri K. Kashinath D. Tetrahedron 2002; 58: 9633
  • 21 Kotha S. Bansal D. Kumar V. Indian J. Chem. 2009; 48B: 225
  • 22 Komine Y. Miyauchi Y. Kobayashi M. Tanaka K. Synlett 2010; 3092
  • 23 Kotha S. Krishna NG. Misra S. Khedkar P. Synthesis 2011; 2945
    • 24a Hudlicky T. Reed JW. The Way of Synthesis. Wiley-VCH; Weinheim: 2007.  9
    • 24b Kotha S. Deb A. Lahiri K. Manivannan E. Synthesis 2009; 165
    • 24c Kotha S. Deb A. Indian J. Chem. 2008; 47B: 1120
    • 24d Kotha S. Panguluri NR. Ali R. Eur. J. Org. Chem. 2017; 5316
    • 24e Kotha S. Manivannan E. ARKIVOC 2003; (iii): 67
    • 24f Kotha S. Manivannan E. Sreenivasachary N. Ganesh T. Deb AC. Synlett 1999; 1618
    • 24g Kotha S. Manivannan E. J. Chem. Soc., Perkin Trans. 1 2001; 2543
    • 25a Kotha S. Ali R. Tiwari A. Synlett 2013; 1921
    • 25b Kotha S. Ali R. Tetrahedron 2015; 71: 1597
    • 25c Fürstner A. Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
    • 26a Kotha S. Ali R. Tetrahedron Lett. 2015; 56: 2172
    • 26b Kotha S. Saifuddin M. Ali R. Shirbhate ME. Sreevani G. Indian J. Chem. 2017; 56B: 1231
  • 27 Kotha S. Ali R. Tetrahedron Lett. 2015; 56: 3992
  • 28 Kotha S. Ali R. Tetrahedron 2015; 71: 1597
    • 29a Kotha S. Ali R. Heterocycles 2014; 88: 789
    • 29b Kotha S. Deb A. Vinodkumar R. Bioorg. Med. Chem. Lett. 2005; 15: 1039
    • 30a Yamamoto Y. Ishii J. Nishiyama H. Itoh K. J. Am. Chem. Soc. 2004; 126: 3712
    • 30b Yamamoto Y. Ishii J. Nishiyama H. Itoh K. J. Am. Chem. Soc. 2005; 127: 9625
  • 31 Chouraqui G. Petit M. Aubert C. Malacria M. Org. Lett. 2009; 6: 1519
  • 32 Mori N. Ikeda S. Odashima K. Chem. Commun. 2001; 181
  • 33 Jeevanandam A. Korivi RP. Huang I. Cheng C. Org. Lett. 2002; 4: 807
    • 34a Young DD. Senaiar RS. Deiters A. Chem. Eur. J. 2006; 12: 5563
    • 34b Young DD. Sripada L. Deiters A. J. Comb. Chem. 2007; 9: 735
    • 34c Brun S. Torrent A. Pla-Quintana A. Roglans A. Fontrodona X. Benet-Buchholz J. Parella T. Organometallics 2012; 31: 318
    • 34d Dachs A. Torrent A. Roglans A. Parella T. Osuna S. Solà M. Chem. Eur. J. 2009; 15: 5289
    • 35a Peters JU. Blechert S. Chem. Commun. 1997; 1983
    • 35b Yamamoto Y. Arakawa T. Ogawa R. Itoh K. J. Am. Chem. Soc. 2003; 125: 12143
    • 36a Kinoshita H. Shinokubo H. Oshima K. J. Am. Chem. Soc. 2003; 125: 7784
    • 36b Cadierno V. Garcia-Garrido SE. Gimeno J. J. Am. Chem. Soc. 2006; 128: 15094
    • 36c Wang Y. Huang S. Huang T. Tsai F. Tetrahedron 2010; 66: 7136
    • 37a Bhatt D. Chowdhury H. Goswami A. Org. Lett. 2017; 19: 3350
    • 37b Chowdhury H. Chatterjee N. Goswami A. Eur. J. Org. Chem. 2015; 7735
    • 38a Hara H. Hirano M. Tanaka K. Org. Lett. 2008; 10: 2537
    • 38b Hiromi H. Hirano M. Tanaka K. Org. Lett. 2009; 11: 1337
    • 38c Zhang K. Louie J. J. Org. Chem. 2011; 76: 4686
    • 38d Matsuda T. Suzuki K. Eur. J. Org. Chem. 2015; 3032
    • 38e Fujita T. Watabe Y. Ichitsuka T. Ichikawa J. Chem. Eur. J. 2015; 21: 13225
    • 39a Wakatsuki Y. Yamazaki H. Tetrahedron Lett. 1973; 14: 3383
    • 39b Wakatsuki Y. Yamazaki H. J. Chem. Soc., Chem. Commun. 1973; 280
    • 39c Lautens M. Klute W. Tam W. Chem. Rev. 1996; 96: 49
    • 39d Yamamoto Y. Kinpara K. Saigoku T. Takagishi H. Okuda S. Nishiyama H. Itoh K. J. Am. Chem. Soc. 2005; 127: 605
    • 39e Domínguez G. Péter-Castells J. Chem. Eur. J. 2016; 22: 6720
    • 40a Boese R. Harvey DF. Malaska MJ. Vollhardt KP. C. J. Am. Chem. Soc. 1994; 116: 11153
    • 40b Pírez D. Siesel BA. Malaska MJ. David E. Vollhardt KP. C. Synlett 2000; 306
    • 40c Sheppard GS. Vollhardt KP. C. J. Org. Chem. 1986; 51: 5496
    • 40d Boese R. Knçlker HJ. Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1987; 26: 1035
    • 41a Eichberg MJ. Dorta RL. Grotjahn DB. Lamottke K. Schmidt M. Vollhardt KP. C. J. Am. Chem. Soc. 2001; 123: 9324
    • 41b Eichberg MJ. Dorta RL. Lamottke K. Vollhardt KP. C. Org. Lett. 2000; 2: 2479
    • 41c Grotjahn DB. Vollhardt KP. C. J. Am. Chem. Soc. 1986; 108: 2091
    • 41d Boese R. Van Sickle AP. Vollhardt KP. C. Synthesis 1994; 1374
    • 42a Pelissier H. Rodriguez J. Vollhardt KP. C. Chem. Eur. J. 1999; 5: 3549
    • 42b Boese R. Rodriguez J. Vollhardt KP. C. Angew. Chem. Int. Ed. Engl. 1991; 30: 993
    • 42c Aubert C. Betschmann P. Eichberg MJ. Gandon V. Heckrodt TJ. Lehmann J. Malacria M. Masjost B. Paredes E. Vollhardt KP. C. Whitener GD. Chem. Eur. J. 2007; 13: 7443
    • 43a Elderfiled RC. Heterocyclic compounds. Vol. 2. Chap. 2 Wiley & Sons; New York: 1951
    • 43b Chang H.-T. Jeganmohan M. Cheng C.-H. Chem. Commun. 2005; 4955
  • 44 Tanaka K. Osaka T. Noguchi K. Hirano M. Org. Lett. 2007; 9: 1307
  • 45 Bonfield ER. Li C. -J. Adv. Synth. Catal. 2008; 350: 370
    • 46a Ramana CV. Salian SR. Gonnade RG. Eur. J. Org. Chem. 2007; 5483
    • 46b Ramana CV. Dushing MP. Mohapatra S. Mallik R. Gonnade RG. Tetrahedron Lett. 2011; 52: 38
    • 46c More AA. Ramana CV. J. Org. Chem. 2016; 81: 3400
    • 46d Paymode DJ. Ramana CV. ACS Omega 2017; 2: 5591