Synlett 2018; 29(13): 1669-1674
DOI: 10.1055/s-0037-1609716
synpacts
© Georg Thieme Verlag Stuttgart · New York

Directing Methylene Oxidation towards Azaheterocycles by Transition-Metal and Organic Catalysis

Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada   Email: jeffrey.vanhumbec1@ucalgary.ca
› Author Affiliations
Financial support was provided by MIT start-up funds, where the experimental work described in reference 14 was performed.
Further Information

Publication History

Received: 07 March 2018

Accepted after revision: 29 March 2018

Publication Date:
02 May 2018 (online)

Abstract

A combination of transition-metal and organic catalysis has been used to deliver a system that can selectively oxidize benzylic methylene groups adjacent to azaheterocycles in preference to other positions that are typically more reactive. Here, we provide more background and context that describes what inspired our approach to catalyst development.

1 Introduction

2 Site-Selective Methylene Oxidation

3 Literature Inspiration for Design Plan

4 Combined Ligand/Metal/HAT Catalyst Effects

5 Perspectives for Future Work

 
  • References

    • 1a Shugrue CR. Miller SJ. Chem. Rev. 2017; 117: 11894
    • 1b Robles O. Romo D. Nat. Prod. Rep. 2014; 31: 318
    • 1c Ping L. Chung DS. Bouffard J. Lee SG. Chem. Soc. Rev. 2017; 46: 4299
    • 1d Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 1e Boutureira O. Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
    • 1f Lewis JC. Coelho PS. Arnold FH. Chem. Soc. Rev. 2011; 40: 2003
  • 2 Li J. Cisar JS. Zhou C.-Y. Vera B. Williams H. Rodríguez AD. Cravatt BF. Romo D. Nat. Chem. 2013; 5: 510
    • 3a Fowler BS. Laemmerhold KM. Miller SJ. J. Am. Chem. Soc. 2012; 134: 9755
    • 3b Pathak TP. Miller SJ. J. Am. Chem. Soc. 2012; 134: 6120
    • 3c Yoganathan S. Miller SJ. J. Med. Chem. 2015; 58: 2367
  • 4 Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
    • 5a Obach RS. Pharmacol. Rev. 2013; 65: 578
    • 5b Genovino J. Sames D. Hamann LG. Touré BB. Angew. Chem. Int. Ed. 2016; 55: 14218
    • 5c Caswell JM. O'Neill M. Taylor SJ. C. Moody TS. Curr. Opin. Chem. Biol. 2013; 17: 271
    • 6a Chen K. Zhang P. Wang Y. Li H. Green Chem. 2014; 16: 2344
    • 6b Roduner E. Kaim W. Sarkar B. Urlacher VB. Pleiss J. Gläser R. Einicke W.-D. Sprenger GA. Beifuß U. Klemm E. Liebner C. Hieronymus H. Hsu S.-F. Plietker B. Laschat S. ChemCatChem 2013; 5: 82
    • 6c Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
  • 7 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies . CRC Press; Boca Raton, FL: 2007
  • 8 Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 9a Howell JM. Feng K. Clark JR. Trzepkowski LJ. White MC. J. Am. Chem. Soc. 2015; 137: 14590
    • 9b Lee M. Sanford MS. Org. Lett. 2017; 19: 572
    • 9c Mbofana CT. Chong E. Lawniczak J. Sanford MS. Org. Lett. 2016; 18: 4258
    • 9d Lee M. Sanford MS. J. Am. Chem. Soc. 2015; 137: 12796
    • 10a Sterckx H. De Houwer J. Mensch C. Caretti I. Tehrani KA. Herrebout WA. Van Doorslaer S. Maes BU. W. Chem. Sci. 2016; 7: 346
    • 10b De Houwer J. Abbaspour Tehrani K. Maes BU. W. Angew. Chem. Int. Ed. 2012; 51: 2745
    • 10c Sterckx H. De Houwer J. Mensch C. Herrebout W. Tehrani KA. Maes BU. W. Beilstein J. Org. Chem. 2016; 12: 144
    • 10d Hruszkewycz DP. Miles KC. Thiel OR. Stahl SS. Chem. Sci. 2017; 8: 1282
    • 10e Hossain MM. Shyu S.-G. Tetrahedron 2016; 72: 4252
    • 10f Bonvin Y. Callens E. Larrosa I. Henderson DA. Oldham J. Burton AJ. Barrett AG. M. Org. Lett. 2005; 7: 4549
    • 10g Liu J. Hu K.-F. Qu J.-P. Kang Y.-B. Org. Lett. 2017; 19: 5593
    • 10h Ren L. Wang L. Lv Y. Li G. Gao S. Org. Lett. 2015; 17: 2078
    • 10i Ma J. Hu Z. Li M. Zhao W. Hu X. Mo W. Hu B. Sun N. Shen Z. Tetrahedron 2015; 71: 6733
    • 10j Jin W. Zheng P. Wong W.-T. Law G.-L. Adv. Synth. Catal. 2017; 359: 1588
    • 10k Abe T. Tanaka S. Ogawa A. Tamura M. Sato K. Itoh S. Chem. Lett. 2016; 46: 348
    • 11a Jonas RT. Stack TD. P. J. Am. Chem. Soc. 1997; 119: 8566
    • 11b Estes DP. Grills DC. Norton JR. J. Am. Chem. Soc. 2014; 136: 17362
    • 11c Roth JP. Mayer JM. Inorg. Chem. 1999; 38: 2760
    • 11d Tarantino KT. Miller DC. Callon TA. Knowles RR. J. Am. Chem. Soc. 2015; 137: 6440
    • 11e Semproni SP. Milsmann C. Chirik PJ. J. Am. Chem. Soc. 2014; 136: 9211
    • 11f Fang H. Ling Z. Lang K. Brothers PJ. de Bruin B. Fu X. Chem. Sci. 2014; 5: 916
    • 11g Audran G. Bagryanskaya E. Bagryanskaya I. Bremond P. Edeleva M. Marque SR. A. Parkhomenko D. Tretyakov E. Zhivetyeva S. Inorg. Chem. Front. 2016; 3: 1464
    • 11h Johnston CW. Schwantje TR. Ferguson MJ. McDonald R. Hicks RG. Chem. Commun. 2014; 50: 12542
  • 12 Liu J. Zhang X. Yi H. Liu C. Liu R. Zhang H. Zhuo K. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
    • 13a Ishii Y. Iwahama T. Sakaguchi S. Nakayama K. Nishiyama Y. J. Org. Chem. 1996; 61: 4520
    • 13b Ishii Y. Nakayama K. Takeno M. Sakaguchi S. Iwahama T. Nishiyama Y. J. Org. Chem. 1995; 60: 3934
    • 13c Ishii Y. Sakaguchi S. Iwahama T. Adv. Synth. Catal. 2001; 343: 393
    • 13d Coseri S. Catal. Rev. 2009; 51: 218
  • 14 Cooper JC. Luo C. Kameyama R. Van Humbeck JF. J. Am. Chem. Soc. 2018; 140: 1243
  • 15 Hermans I. Peeters J. Jacobs PA. Top. Catal. 2008; 50: 124