Synthesis 2018; 50(21): 4165-4188
DOI: 10.1055/s-0037-1609932
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Copper(II)-Mediated or -Catalyzed C–H Functionalization

Zhao-Kun Li
a   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn
b   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: liangyin@sioc.ac.cn
,
Xue-Shun Jia*
a   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn
,
Liang Yin  *
b   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: liangyin@sioc.ac.cn
› Author Affiliations
We gratefully acknowledge the financial support from the ‘Thousand Youth Talents Plan’, the National Natural Sciences Foundation of China (No. 21672235), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the ‘Shanghai Rising-Star Plan’ (No. 15QA1404600), CAS Key Laboratory of Synthetic Chemistry of Natural Substances and Shanghai Institute of Organic Chemistry.
Further Information

Publication History

Received: 22 May 2018

Accepted after revision: 29 June 2018

Publication Date:
20 September 2018 (online)


Abstract

This review summarizes recent developments in the field of copper-mediated or -catalyzed C–H functionalization. The substrate scope has been expanded from the C–H activation of aryls to more challenging alkyls. Furthermore, catalytic amounts of copper salt are sufficient to promote the challenging C–H functionalization in some cases, which represents the focus of future research.

1 Introduction

2 C–C Bond Formation

3 C–N Bond Formation

4 C–O Bond Formation

5 C–Halogen Bond Formation

6 C–S Bond Formation

7 Conclusions and Outlook

 
  • References

  • 1 Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
  • 2 McMurray L. O’Hara F. Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
  • 3 Collet F. Lescot C. Dauban P. Chem. Soc. Rev. 2011; 40: 1926
  • 4 Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 5 Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 6a Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 6b Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 6c Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 6d Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 6e Gutekunst WR. Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 6f Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 6g Yu D.-G. Li B.-J. Shi Z.-J. Tetrahedron 2012; 68: 5130
    • 6h Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 6i Zhang X.-S. Chen K. Shi Z.-J. Chem. Sci. 2014; 5: 2146
    • 6j Zheng C. You S.-L. RSC Adv. 2014; 4: 6173
    • 6k Dong Z. Ren Z. Thompson SJ. Xu Y. Dong G. Chem. Rev. 2017; 117: 9333
    • 6l Henry MC. Mostafa MA. B. Sutherland A. Synthesis 2017; 49: 4586
    • 6m Mihai MT. Genov GR. Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
    • 7a Engle KM. Mei TS. Wasa M. Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 7b Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 7c Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 9a Jia C. Kitamura T. Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 9b Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 9c Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 9d Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 9e Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 9f He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 10a Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 10b Campbell AN. Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 10c Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 10d Su B. Cao Z.-C. Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 10e Castro ML. C. Chatani N. Chem. Lett. 2015; 44: 410
  • 11 Shang M. Sun S.-Z. Wang H.-L. Wang M.-M. Dai H.-X. Synthesis 2016; 48: 4381
  • 12 Takamatsu K. Hirano K. Miura M. Angew. Chem. Int. Ed. 2017; 56: 5353
  • 13 Shang M. Wang M.-M. Saint-Denis TG. Li M.-H. Dai H.-X. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 5317
  • 14 Dai J.-L. Shao N.-Q. Zhang J. Jia R.-P. Wang D.-H. J. Am. Chem. Soc. 2017; 139: 12390
  • 15 Sinclair GS. Yang T. Wang S. Chen WH. Schipper DJ. Org. Lett. 2017; 19: 802
  • 16 Zhang T.-Y. Lin J.-B. Li Q.-Z. Kang J.-C. Pan J.-L. Hou S.-H. Chen C. Zhang S.-Y. Org. Lett. 2017; 19: 1764
  • 17 Tan G. Zhang L. Liao X. Shi Y. Wu Y. Yang Y. You J. Org. Lett. 2017; 19: 4830
  • 18 Wang C. Zhang Z. Liu K. Yan J. Zhang T. Lu G. Meng Q. Chi H. Duan C. Org. Biomol. Chem. 2017; 15: 6185
  • 19 Song H. Liu X. Wang C. Qiao J. Chu W. Sun Z. Asian J. Org. Chem. 2017; 6: 1693
  • 20 Ke M. Song Q. Chem. Commun. 2017; 53: 2222
  • 21 Wang R. Jin R.-X. Qin Z.-Y. Bian K.-J. Wang X.-S. Chem. Commun. 2017; 53: 12229
  • 22 Wang R. Li Y. Jin R.-X. Wang X.-S. Chem. Sci. 2017; 8: 3838
  • 23 Feng P. Ma G. Zhang T. Wang C. Asian J. Org. Chem. 2018; 7: 788
  • 24 Kianmehr E. Lomedasht YA. Faghih N. Khan KM. J. Org. Chem. 2016; 81: 6087
    • 25a Kianmehr E. Baghersad MH. Adv. Synth. Catal. 2011; 353: 2599
    • 25b Yang X. Zhang Y. Ma D. Adv. Synth. Catal. 2012; 354: 2443
    • 25c Vinogradova EV. Fors BP. Buchwald SL. J. Am. Chem. Soc. 2012; 134: 11132
    • 25d Vinogradova EV. Park NH. Fors BP. Buchwald SL. Org. Lett. 2013; 15: 1394
    • 25e Sun N. Zhang H. Mo W. Hu B. Shen Z. Hu X. Synlett 2013; 24: 1443
    • 25f Yin H. Chen B. Zhang X. Yang X. Zhang Y. Jiang Y. Ma D. Tetrahedron 2013; 69: 5326
    • 25g Yin H. de Almeida AM. de Almeida MV. Lindhardt AT. Skrydstrup T. Org. Lett. 2015; 17: 1248
  • 26 Shang M. Shao Q. Sun S.-Z. Chen Y.-Q. Xu H. Dai H.-X. Yu J.-Q. Chem. Sci. 2017; 8: 1469
  • 27 Li Z. Yu H. Bolm C. Angew. Chem. Int. Ed. 2017; 56: 9532
  • 28 Li Y. Wang R. Wang T. Chen X.-F. Zhou X. Fei F. Wang X.-S. Angew. Chem. Int. Ed. 2017; 56: 15436
  • 29 Meng D. Tang Y. Wei J. Shi X. Yang M. Chem. Commun. 2017; 53: 5744
  • 30 Mal A. Goswami G. Wani IA. Ghorai MK. Chem. Commun. 2017; 53: 10263
  • 31 Bedford RB. Bowen JG. Méndez-Gálvez C. J. Org. Chem. 2017; 82: 1719
  • 32 De PB. Pradhan S. Punniyamurthy T. J. Org. Chem. 2017; 82: 3183
  • 33 Hong D. Lin X. Zhu Y. Lei M. Wang Y. Org. Lett. 2009; 11: 5678
  • 34 Sengoden M. Bhowmick A. Punniyamurthy T. Org. Lett. 2017; 19: 158
  • 35 da Silva RB. Teixeira RI. Wardell JL. Wardell SM. S. V. Garden SJ. Org. Biomol. Chem. 2017; 15: 812
  • 36 Gholap AV. A. Maity S. Schulzke C. Maiti D. Kapdi AR. Org. Biomol. Chem. 2017; 15: 7140
  • 37 Shimizu M. Hayama N. Kimachi T. Inamoto K. Synthesis 2017; 49: 4183
  • 38 Mahesh D. Satheesh V. Kumar SV. Punniyamurthy T. Org. Lett. 2017; 19: 6554
  • 39 Zhang T.-Y. Liu C. Chen C. Liu J.-X. Xiang H.-Y. Jiang W. Ding T.-M. Zhang S.-Y. Org. Lett. 2018; 20: 220
  • 40 Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett. 1983; 1211
  • 41 Wang F. He Y. Tian M. Zhang X. Fan X. Org. Lett. 2018; 20: 864
  • 42 Liu J. Zou J. Yao J. Chen G. Adv. Synth. Catal. 2018; 360: 659
    • 43a Li X. Liu Y.-H. Gu W.-J. Li B. Chen F.-J. Shi B.-F. Org. Lett. 2014; 16: 3904
    • 43b Sun S.-Z. Shang M. Wang H.-L. Lin H.-X. Dai H.-X. Yu J.-Q. J. Org. Chem. 2015; 80: 8843
    • 43c Singh BK. Jana R. J. Org. Chem. 2016; 81: 831
  • 44 Wang F. Hu Q. Shu C. Lin Z. Min D. Shi T. Zhang W. Org. Lett. 2017; 19: 3636
  • 45 Huang H. Wu Y. Zhang W. Feng C. Wang B.-Q. Cai W.-F. Hu P. Zhao K.-Q. Xiang S.-K. J. Org. Chem. 2017; 82: 3094
  • 46 Tanaka H. Oisaki K. Kanai M. Synlett 2017; 28: 1576
  • 47 Lu W. Xu H. Shen Z. Org. Biomol. Chem. 2017; 15: 1261
  • 49 Liu T. Myers MC. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 306
  • 50 Lee W.-CC. Tehrani A. Li JJ. Synthesis 2017; 49: 2865
  • 51 Dua Y. Liu Y. Wan J.-P. J. Org. Chem. 2018; 83: 3403
  • 52 Bi WZ. Qu C. Chen XL. Wei SK. Qu LB. Liu SY. Sun K. Zhao YF. Tetrahedron 2018; 74: 1908
  • 53 Liang S. Bolte M. Manolikakes G. Chem.–Eur. J. 2017; 23: 96
    • 54a Rao W.-H. Shi B.-F. Org. Lett. 2015; 17: 2784
    • 54b Liu J. Yu L. Zhuang S. Gui Q. Chen X. Wang W. Tan Z. Chem. Commun. 2015; 51: 6418
    • 54c Du B. Qian P. Wang Y. Mei H. Han J. Pan Y. Org. Lett. 2016; 18: 4144
    • 54d Liang S. Liu N.-W. Manolikakes G. Adv. Synth. Catal. 2016; 358: 159
  • 55 Li Y. Liu Y.-J. Shi B.-F. Adv. Synth. Catal. 2017; 359: 4117
  • 56 Gandeepan P. Koeller J. Ackermann L. ACS Catal. 2017; 7: 1030
  • 57 Jiang H. Yu W. Tang X. Li J. Wu W. J. Org. Chem. 2017; 82: 9312
  • 58 Li J.-M. Wang Y.-H. Yu Y. Wu R.-B. Weng J. Lu G. ACS Catal. 2017; 7: 2661
  • 59 Xia H. An Y. Zeng X. Wu J. Org. Chem. Front. 2018; 5: 366
  • 60 Xiong Y.-S. Yu Y. Weng J. Lu G. Org. Chem. Front. 2018; 5: 982
  • 61 Chen L. Liu P. Wu J. Dai B. Tetrahedron 2018; 74: 1513
  • 62 Yu H. Li Z. Bolm C. Org. Lett. 2018; 20: 2076