Synthesis 2018; 50(15): 2853-2866
DOI: 10.1055/s-0037-1610073
short review
© Georg Thieme Verlag Stuttgart · New York

Cross-Dehydrogenative Coupling Reactions for the Functionalization of α-Amino Acid Derivatives and Peptides

Marcos San Segundo
,
We are grateful to MINECO (CTQ2016-78395-P) and Gobierno Vasco (IT_1033-16) for financial support. A. C. thanks MINECO for a Ramón y Cajal research contract (RYC-2012-09873). Cost-CHAOS action (CA15106) is also acknowledged.
Further Information

Publication History

Received: 13 April 2018

Accepted: 27 April 2018

Publication Date:
25 June 2018 (eFirst)

Abstract

The functionalization of typically unreactive C(sp3)–H bonds holds great promise for reducing the reliance on existing functional groups while improving atom-economy and energy efficiency. As a result, this topic is a matter of genuine concern for scientists in order to achieve greener chemical processes. The site-specific modification of α-amino acid and peptides based upon C(sp3)–H functionalization still represents a great challenge of utmost synthetic importance. This short review summarizes the most recent advances in ‘Cross-Dehydrogenative Couplings’ of α-amino carbonyl compounds and peptide derivatives with a variety of nucleophilic coupling partners.

1 Introduction

2 C–C Bond-Forming Oxidative Couplings

2.1 Reaction with Alkynes

2.2 Reaction with Alkenes

2.3 Reaction with (Hetero)arenes

2.4 Reaction with Alkyl Reagents

3 C–Heteroatom Bond-Forming Oxidative Couplings

3.1 C–P Bond Formation

3.2 C–N Bond Formation

3.3 C–O and C–S Bond Formation

4 Conclusions

 
  • References


    • For selected reviews, see:
    • 2a He G. Wang B. Nack WA. Chen G. Acc. Chem. Res. 2016; 49: 635
    • 2b Metz AM. Kozlowski MC. J. Org. Chem. 2015; 80: 1
    • 2c Noisier AF. M. Brimble MA. Chem. Rev. 2014; 114: 8775
    • 2d Nájera C. Sansano JM. Chem. Rev. 2007; 107: 4584

      For selected references, see:
    • 3a Bauer M. Wang W. Lorion MM. Dong C. Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 203
    • 3b Sengupta S. Mehta G. Tetrahedron Lett. 2017; 58: 1357
    • 3c deGruyter JN. Malins LR. Baran PS. Biochemistry 2017; 56: 3683
    • 3d Jbara M. Maity SK. Brik A. Angew. Chem. Int. Ed. 2017; 56: 10644
    • 3e Osberger TJ. Rogness DC. Kohrt JT. Stepan AF. White MC. Nature (London) 2016; 537: 214
    • 3f Fosgerau K. Hoffmann T. Drug Discovery Today 2015; 20: 122

      For selected recent reviews, see:
    • 4a Chu JC. K. Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 4b Tzouras NV. Stamatopoulos IK. Papastavrou AT. Liori AA. Vougioukalakis GC. Coord. Chem. Rev. 2017; 343: 25
    • 4c He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 4d Cera G. Ackermann L. Top. Curr. Chem. 2016; 374: 191
    • 4e Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 4f Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 4g Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 4h Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 4i Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147

      For recent reviews, see:
    • 5a Funes-Ardoiz I. Maseras F. ACS Catal. 2018; 8: 1161
    • 5b Chu X.-Q. Ge D. Shen Z.-L. Loh T.-P. ACS Catal. 2018; 8: 258
    • 5c Gini A. Brandhofer T. García Mancheño O. Org. Biomol. Chem. 2017; 15: 1294
    • 5d Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
    • 5e Varun BV. Dhineshkumar J. Bettadapur KR. Siddaraju Y. Alagiri K. Prabhu KR. Tetrahedron Lett. 2017; 58: 803
    • 5f Lv L. Li Z. Top. Curr. Chem. 2016; 374: 225
    • 5g Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 5h Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 5i Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 6a Guo S.-r. Kumar PS. Yang M. Adv. Synth. Catal. 2017; 359: 2
    • 6b Lakshman MK. Vuram PK. Chem. Sci. 2017; 8: 5845
    • 6c Dai X.-J. Li C.-J. In Comprehensive Organic Synthesis . Vol. 7 Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 242

      See, for example:
    • 7a Guin S. Deb A. Dolui P. Chakraborty S. Singh VK. Maiti D. ACS Catal. 2018; 8: 2664
    • 7b Ruan Z. Sauermann N. Manoni E. Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 3172
    • 7c Hernando E. Villalva J. Martínez AM. Alonso I. Rodríguez N. Gómez Arrayás R. Carretero JC. ACS Catal. 2016; 6: 6868
    • 7d Li S. Zhu R.-Y. Xiao K.-J. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 4317
    • 7e Vinogradova EV. Zhang C. Spokoyny AM. Pentelute BL. Buchwald SL. Nature (London) 2015; 526: 687
    • 7f Zhang LS. Chen G. Wang X. Guo Q.-Y. Zhang X.-S. Pan F. Chen K. Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 3899
    • 7g Tran LD. Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188

      See, for example:
    • 8a Chen T.-T. Cai C. Synlett 2017; 28: 1368
    • 8b Wei X.-H. Zhao L.-B. Zhou H.-C. RSC Adv. 2017; 7: 16561
    • 8c Wei X.-H. Wang G.-W. Yang S.-D. Chem. Commun. 2015; 51: 832
    • 8d Yoo W.-J. Tanoue A. Kobayashi S. Asian J. Org. Chem. 2014; 3: 1066

      See, for example:
    • 9a Li Z. Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 9b Li Z. Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
    • 9c Li Z. Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
  • 10 Zhao L. Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
  • 11 Zhao L. Baslé O. Li C.-J. Proc. Natl. Acd. Sci. U.S.A. 2009; 106: 4106
  • 12 Xie Z. Liu X. Liu L. Org. Lett. 2016; 18: 2982
    • 13a Ni- and Fe-Based Cross-Coupling Reactions . Vol. 374 Correa A. Springer; Berlin: 2016
    • 13b Fürstner A. ACS Cent. Sci. 2016; 2: 778
    • 13c Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 13d Jia F. Li Z. Org. Chem. Front. 2014; 1: 194
    • 13e Gopalaiah K. Chem. Rev. 2013; 113: 3248
    • 13f Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 13g Correa A. García-Mancheño O. Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 13h Bolm C. Legros J. Paih JL. Zani L. Chem. Rev. 2004; 104: 6217
    • 14a Liu P. Wang Z. Lin J. Hu X. Eur. J. Org. Chem. 2012; 1583
    • 14b Liu P. Li Y. Wang H. Wang Z. Hu X. Tetrahedron Lett. 2012; 53: 6654
  • 15 Richter H. García Mancheño O. Org. Lett. 2011; 13: 6066
  • 16 Rohlmann R. Stopka T. Richter H. García Mancheño O. J. Org. Chem. 2013; 78: 6050
  • 17 Jia X. Peng F. Qing C. Huo C. Wang X. Org. Lett. 2012; 14: 4030
  • 18 Jia X. Wang Y. Peng F. Huo C. Yu L. Liu J. Wang X. J. Org. Chem. 2013; 78: 9450
  • 19 Wang Y. Peng F. Liu J. Huo C. Wang X. Jia X. J. Org. Chem. 2015; 80: 609
  • 20 Liu J. Wang Y. Yu L. Huo C. Wang X. Jia X. Adv. Synth. Catal. 2014; 356: 3214
  • 21 Jia X. Huo W. Shao Y. Yuan Y. Chen Q. Li P. Liu X. Ji H. Chem. Eur. J. 2017; 23: 12980
  • 22 Huo C. Yuan Y. Wu M. Jia X. Wang X. Chen F. Tang J. Angew. Chem. Int. Ed. 2014; 53: 13544
  • 23 Huo C. Xie H. Wu M. Jia X. Wang X. Chen F. Tang J. Chem. Eur. J. 2015; 21: 5723
  • 24 Liu G. Quian J. Hua J. Cai F. Li X. Liu L. Org. Biomol. Chem. 2016; 14: 1147
  • 25 Xie Z. Jia J. Liu X. Liu L. Adv. Synth. Catal. 2016; 358: 919
  • 26 Ni M. Zhang Y. Gong T. Feng B. Adv. Synth. Catal. 2017; 359: 824
  • 27 Yang X. Li L. Li Y. Zhang Y. J. Org. Chem. 2016; 81: 12433
  • 28 Liu X. Shao Y. Li P. Ji H. Yuan Y. Jia X. Tetrahedron Lett. 2018; 59: 637
    • 29a Shirakawa S. Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 29b Hashimoto T. Maruoka K. Chem. Rev. 2007; 107: 5656
  • 30 Huo C. Wang C. Wu M. Jia X. Xie H. Yuan Y. Adv. Synth. Catal. 2014; 356: 411
  • 31 Wu J.-C. Song R.-J. Wang Z.-Q. Huang X.-C. Xie Y.-X. Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 3453
  • 32 Tang R.-Y. Guo X.-K. Xiang J.-N. Li J.-H. J. Org. Chem. 2013; 78: 11163
  • 33 Yi N. Li J. Zhang H. Wang R. Jiang J. Deng W. Zeng Z. Xiang J. Synth. Commun. 2017; 47: 2062
  • 34 Huo C. Wang C. Sun C. Jia X. Wang X. Chang W. Wu M. Adv. Synth. Catal. 2013; 355: 1911
  • 35 Salman M. Zhu Z.-Q. Huang Z.-Z. Org. Lett. 2016; 18: 1526
    • 36a Xu Z. Yu X. Feng X. Bao M. J. Org. Chem. 2012; 77: 7114
    • 36b Xu Z. Yu X. Feng X. Bao M. Beilstein J. Org. Chem. 2012; 8: 1564
  • 37 Jiao J. Zhang J.-R. Liao Y.-Y. Xu L. Hu M. Tang R.-Y. RSC Adv. 2017; 7: 30152
  • 38 Ramana DV. Chowhan LR. Chandrasekharam M. ChemistrySelect 2017; 2: 2241
  • 39 Li K. Tan G. Huang J. Song F. You J. Angew. Chem. Int. Ed. 2013; 52: 12942
  • 40 Zhang Y. Ni M. Feng B. Org. Biomol. Chem. 2016; 14: 1550
  • 41 Huo C. Dong J. Su Y. Tang J. Chen F. Chem. Commun. 2016; 52: 13341
  • 42 San Segundo M. Guerrero I. Correa A. Org. Lett. 2017; 19: 5288
  • 43 Wang Z.-Q. Hu M. Huang X.-C. Gong L.-B. Xie Y.-X. Li J.-H. J. Org. Chem. 2012; 77: 8705
  • 44 Zhu S. Rueping M. Chem. Commun. 2012; 48: 11960
  • 45 Gao X.-W. Meng Q.-Y. Li J.-X. Zhong J.-J. Lei T. Li X.-B. Tung C.-H. Wu L.-Z. ACS Catal. 2015; 5: 2391
  • 46 Wu X. Zhang D. Zhou S. Gao F. Liu H. Chem. Commun. 2015; 51: 12571
  • 47 Xie J. Huang Z.-Z. Angew. Chem. Int. Ed. 2010; 49: 10181
  • 48 Gao X.-W. Meng Q.-Y. Xiang M. Chen B. Feng K. Tung C.-H. Wu L.-Z. Adv. Synth. Catal. 2013; 355: 2158
  • 49 Zhang G. Zhang Y. Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
  • 50 Tan Y. Yuan W. Gong L. Meggers E. Angew. Chem. Int. Ed. 2015; 54: 13045
  • 51 Jia X. Wang Y. Peng F. Huo C. Yu L. Liu J. Wang X. Adv. Synth. Catal. 2014; 356: 1210
  • 52 Zhu Z.-Q. Xie Z.-B. Le Z.-G. J. Org. Chem. 2016; 81: 9449
  • 53 Zhu Z.-Q. Xie Z.-B. Le Z.-G. Synlett 2017; 28: 485
  • 54 Peng H. Yu J.-T. Jiang Y. Yang H. Cheng J. J. Org. Chem. 2014; 79: 9847
  • 55 Zhu Z.-Q. Bai P. Huang Z.-Z. Org. Lett. 2014; 16: 4881
  • 56 Li K. Wu Q. Lan J. You J. Nat. Chem. 2015; 6: 8404
  • 57 Tan M. Li K. Yin J. You J. Chem. Commun. 2018; 54: 1221
  • 58 Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2014; 356: 1703
  • 59 Huo C. Chen F. Yuan Y. Xie H. Wang Y. Org. Lett. 2015; 17: 5028
  • 60 Huo C. Yuan Y. Chen F. Wang Y. Adv. Synth. Catal. 2015; 357: 3648
  • 61 Huo C. Xie H. Chen F. Tang J. Wang Y. Adv. Synth. Catal. 2016; 358: 724
  • 62 Baslé O. Li C.-J. Chem. Commun. 2009; 4124
  • 63 Yang B. Yang T.-T. Li X.-A. Wang J.-J. Yang S.-D. Org. Lett. 2013; 15: 5024
  • 64 Zhi H. Ung SP.-M. Liu Y. Zhao L. Li C.-J. Adv. Synth. Catal. 2016; 358: 2553
  • 65 Jia X. Liu X. Shao Y. Yuan Y. Zhu Y. Hou W. Zhang X. Adv. Synth. Catal. 2017; 359: 4399
  • 66 Liu X.-X. Wu Z.-Y. He Y.-Q. Zhou X.-Q. Hu T. Ma C.-W. Huang G.-S. Adv. Synth. Catal. 2016; 358: 2385
  • 67 Li Y.-J. Li X. Zhang S.-X. Zhao Y.-L. Liu Q. Chem. Commun. 2015; 51: 11565
  • 68 Huo C. Yuan Y. Chen F. Tang J. Wang Y. Org. Lett. 2015; 17: 4208
  • 69 Xie J. Huang Y. Song H. Liu Y. Wang Q. Org. Lett. 2017; 19: 6056
  • 70 Li H. Huang S. Wang Y. Huo C. Org. Lett. 2018; 20: 92
  • 71 Liu X. Pu J. Luo X. Cui X. Wu Z. Huang G. Org. Chem. Front. 2018; 5: 361