Synthesis 2018; 50(20): 4019-4036
DOI: 10.1055/s-0037-1610236
short review
© Georg Thieme Verlag Stuttgart · New York

Dichlorodioxomolybdenum(VI) Complexes: Useful and Readily Available Catalysts in Organic Synthesis

Raquel Hernández-Ruiz
,
Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza. Misael Bañuelos s/n, Universidad de Burgos, 09001 Burgos, Spain   Email: rsd@ubu.es
› Author Affiliations
Financial support from Ministerio de Economía y Competitividad (MINECO) (CTQ2016-48937-C2-1-P) and Junta de Castilla y León and FEDER (BU076U16) is gratefully acknowledged.
Further Information

Publication History

Received: 21 May 2018

Accepted after revision: 16 July 2018

Publication Date:
05 September 2018 (online)


Abstract

Molybdenum(VI) dichloride dioxide (MoO2Cl2), and its addition complexes [MoO2Cl2(L)n; L = neutral ligand], are commercially or easily available and inexpensive transition-metal complexes based on a non-noble metal that can be applied as catalysts for various organic transformations. This short review aims to present the most significant breakthroughs in this field.

1 Introduction

2 Preparation and Reactivity of MoO2Cl2(L)n Complexes

2.1 Synthesis and Structure

2.2 Reactivity of Dichlorodioxomolybdenum(VI) Complexes

3 Redox Processes Catalyzed by MoO2Cl2(L)n Complexes

3.1 Deoxygenation Reactions Using Phosphorus Compounds

3.2 Deoxygenation and Hydrosilylation Reactions Using Silanes

3.3 Reduction Reactions Using Hydrogen

3.4 Deoxygenation Reactions with Boranes and Thiols

3.5 Reduction Reactions with Glycols

3.6 Oxidation Reactions

4 Ambiphilic Reactivity of MoO2Cl2

4.1 Amphoteric Lewis Acid–Lewis Base Catalyzed Reactions

4.2 Lewis Acid Type Catalyzed Reactions

5 Conclusion and Perspective

 
  • References

    • 1a Metz S. Thiel W. Coord. Chem. Rev. 2011; 255: 1085
    • 1b Hille R. Dalton Trans. 2013; 42: 3029
  • 2 Khurana JM. Chauhan S. Agrawal A. Org. Prep. Proced. Int. 2004; 36: 201

    • For previous reviews, see:
    • 3a Sanz R. Pedrosa MR. Curr. Org. Synth. 2009; 6: 239
    • 3b Jeyakumar K. Chand DK. J. Chem. Sci. 2009; 121: 111
    • 3c Sanz R. Pedrosa MR. Adv. Org. Synth. 2012; 4: 183
  • 4 Chand DK. Chakravarthy RD. Molybdenum Chloride Oxide. In Encyclopedia of Reagents for Organic Synthesis. Wiley; Chichester: 2012
  • 5 Schrock RR. Murdzek JS. Bazan GC. Robbins J. DiMare M. O’Regan M. J. Am. Chem. Soc. 1990; 112: 3875
  • 6 Colton R. Tomkins IB. Aust. J. Chem. 1965; 18: 447 ; and references cited therein
    • 7a Arnáiz FJ. Aguado R. Sanz-Aparicio J. Martínez-Ripoll M. Polyhedron 1994; 13: 2745
    • 7b Arnáiz FJ. Inorg. Synth. 1997; 31: 246
  • 8 Arnáiz FJ. Aguado R. Pedros MR. De Cian A. Inorg. Chim. Acta 2003; 347: 33
    • 9a Butcher RJ. Gunz HP. Maclagan RG. A. R. Powell HK. J. Wilkins CJ. Hian YS. J. Chem. Soc., Dalton Trans. 1975; 1223
    • 9b Wang G. Chen G. Luck RL. Wang Z. Mu Z. Evans DG. Duan X. Inorg. Chim. Acta 2004; 357: 3223
  • 10 Rufanov KA. Zarubin DN. Ustynyuk NA. Gourevitch DN. Sundermeyer J. Churakov AV. Howard JA. K. Polyhedron 2001; 20: 379

    • See, for instance:
    • 11a Kühn FE. Lopes AD. Santos AM. Herdtweck E. Haider JJ. Romão CC. Gil Santos A. J. Mol. Catal. A: Chem. 2000; 151: 147
    • 11b Kühn FE. Santos AM. Lopes AD. Gonçalves IS. Rodríguez-Borges JE. Pillinger M. Romão CC. J. Organomet. Chem. 2001; 621: 207
    • 11c Groarke M. Gonçalves IS. Herrman WA. Kühn FE. J. Organomet. Chem. 2002; 649: 108
    • 11d Mas-Marzá E. Reis PM. Peris E. Royo B. J. Organomet. Chem. 2006; 691: 2708
  • 12 Nemykin VN. Laskin J. Basu P. J. Am. Chem. Soc. 2004; 126: 8604
  • 13 Enemark JH. Cooney JJ. A. Wang J.-J. Holm RH. Chem. Rev. 2004; 104: 1175
    • 14a Arzoumanian H. Coord. Chem. Rev. 1998; 178–180: 191
    • 14b Smith PD. Millar AJ. Young CG. Ghosh A. Basu P. J. Am. Chem. Soc. 2000; 122: 9298
  • 15 Castiñeira Reis M. Marín-Luna M. Silva-López C. Nieto-Faza O. Inorg. Chem. 2017; 56: 10570
  • 16 Kennedy-Smith JJ. Nolin KA. Gunterman HP. Toste FD. J. Am. Chem. Soc. 2003; 125: 4056
  • 17 For a review comparing oxo-molybdenum and oxo-rhenium complexes, see: Sousa SC. A. Fernandes AC. Coord. Chem. Rev. 2015; 284: 67
  • 18 Sanz R. Escribano J. Aguado R. Pedrosa MR. Arnáiz FJ. Synthesis 2004; 1629
  • 19 Sanz R. Escribano J. Fernández Y. Aguado R. Pedrosa MR. Arnáiz FJ. Synlett 2005; 1389
  • 20 It has been reported that the reaction of MoO2Cl2(DMF)2 with PPh3 affords the dinuclear species Mo2O3Cl4(DMF)4. See: Aguado R. Escribano J. Pedrosa MR. De Cian A. Sanz R. Arnáiz FJ. Polyhedron 2007; 26: 3842
  • 21 Gribble GW. In Indole Ring Synthesis: From Natural Products to Drug Discovery . John Wiley & Sons; Chichester: 2016: 266
  • 22 Majgier-Baranowska H. Williams JD. Li B. Peet NP. Tetrahedron Lett. 2012; 53: 4785
  • 23 Freeman AW. Urvoy M. Criswell ME. J. Org. Chem. 2005; 70: 5014
  • 24 Sanz R. Escribano J. Pedrosa MR. Aguado R. Arnáiz FJ. Adv. Synth. Catal. 2007; 349: 713
    • 25a Yamamoto Y. Yamada S. Nishiyama H. Adv. Synth. Catal. 2011; 353: 701
    • 25b Yamamoto Y. Ohkubo E. Shibuya M. Adv. Synth. Catal. 2017; 359: 1747
  • 26 Huleatt PB. Lau J. Chua S. Tan YL. Duong HA. Chai CL. L. Tetrahedron Lett. 2011; 52: 1339
  • 27 Karimi S. Ma S. Liu Y. Ramig K. Greer EM. Kwon K. Berkowitz WF. Subramaniam G. Tetrahedron Lett. 2017; 58: 2223
    • 29a Davies IW. Guner VA. Houk KN. Org. Lett. 2004; 6: 743
    • 29b Merisor E. Conrad J. Klaiber I. Mika S. Beifuss U. Angew. Chem. Int. Ed. 2007; 46: 3353
    • 29c See also ref. 27

      See, for instance:
    • 30a Zhu Z. Espenson JH. J. Mol. Catal. A: Chem. 1995; 103: 87
    • 30b Sousa SC. A. Fernandes AC. Tetrahedron Lett. 2011; 52: 6960
    • 30c Nakagiri T. Murai M. Takai T. Org. Lett. 2015; 17: 3346
  • 31 Hills L. Moyano R. Montilla F. Pastor A. Galindo A. Álvarez E. Marchetti F. Pettinari C. Eur. J. Inorg. Chem. 2013; 3352 ; however, a good yield was obtained using a dioxomolybdenum(VI) complex with acylpyrazolonate ligands
  • 32 Asako S. Sakae T. Murai M. Takai K. Adv. Synth. Catal. 2016; 358: 3966
    • 33a Fernandes AC. Fernandes R. Romão CC. Royo B. Chem. Commun. 2005; 213
    • 33b Reis PM. Romão CC. Royo B. Dalton Trans. 2006; 1842
  • 34 Fernandes AC. Romão CC. Tetrahedron Lett. 2005; 46: 8881
  • 35 Smith CA. Cross LE. Hughes K. Davis RE. Judd DB. Merritt AT. Tetrahedron Lett. 2009; 50: 4906
  • 36 Fernandes AC. Romão CC. J. Mol. Catal. A: Chem. 2006; 253: 96
  • 37 Fernandes AC. Romão CC. J. Mol. Catal. A: Chem. 2007; 272: 60
  • 38 Fernandes AC. Romão CC. Tetrahedron 2006; 62: 9650
  • 39 Fernandes TA. Fernandes AC. ChemCatChem 2015; 7: 3503
    • 40a Costa PJ. Romão CC. Fernandes AC. Royo B. Reis PM. Calhorda MJ. Chem. Eur. J. 2007; 13: 3934
    • 40b Drees M. Strassner T. Inorg. Chem. 2007; 46: 10850
    • 40c Ning X. Wang J. Wei H. J. Phys. Chem. A 2016; 120: 4167
    • 40d Wang Y. Gu P. Wang W. Wei H. Catal. Sci. Technol. 2014; 4: 43
  • 41 Reis PM. Costa PJ. Romão CC. Fernandes JA. Calhorda MJ. Royo B. Dalton Trans. 2008; 1727
  • 42 Reis PM. Royo B. Tetrahedron Lett. 2009; 50: 949
  • 43 Fernandes AC. Romão CC. Tetrahedron Lett. 2007; 48: 9176
    • 44a Calhorda MJ. Costa PJ. Dalton Trans. 2009; 8155
    • 44b Huang L. Wei H. New J. Chem. 2014; 38: 5421
  • 45 García N. Fernández-Rodríguez MA. García-García P. Pedrosa MR. Arnáiz FJ. Sanz R. RSC Adv. 2016; 6: 27083
  • 46 García N. García-García P. Fernández-Rodríguez MA. Rubio R. Pedrosa MR. Arnáiz FJ. Sanz R. Adv. Synth. Catal. 2012; 354: 321
  • 47 Hanson SK. Baker RT. Gordon JC. Scott BL. Sutton AD. Thorn DL. J. Am. Chem. Soc. 2009; 131: 428
  • 48 García N. García-García P. Fernández-Rodríguez MA. García D. Pedrosa MR. Arnáiz FJ. Sanz R. Green Chem. 2013; 15: 999
  • 49 Rubio-Presa R. Fernández-Rodríguez MA. Pedrosa MR. Arnáiz FJ. Sanz R. Adv. Synth. Catal. 2017; 359: 1752
  • 50 Rubio-Presa R. Pedrosa MR. Fernández-Rodríguez MA. Arnáiz FJ. Sanz R. Org. Lett. 2017; 19: 5470
  • 51 For an excellent review of this type of strategies, see: Zhou J. Zeng X.-P. In Multicatalyst System in Asymmetric Catalysis . Zhou J. John Wiley & Sons; New York: 2014: 633
  • 52 Rubio-Presa R. Suárez-Pantiga S. Pedrosa MR. Sanz R. Adv. Synth. Catal. 2018; 360: 2216
  • 53 Dethlefsen JR. Lupp D. Oh B.-C. Fristrup P. ChemSusChem 2014; 7: 425
  • 54 Dethlefsen JR. Lupp D. Teshome A. Nielsen LB. Fristrup P. ACS Catal. 2015; 5: 3638
  • 55 Lupp D. Christensen NJ. Dethlefsen JR. Fristrup P. Chem. Eur. J. 2015; 21: 3435

    • For selected reviews, see:
    • 56a Kühn FE. Zhao J. Herrmann WA. Tetrahedron: Asymmetry 2005; 16: 3469
    • 56b Kühn FE. Santos AM. Abrantes M. Chem. Rev. 2006; 106: 2455
    • 56c Jain KR. Herrmann WA. Kühn FE. Coord. Chem. Rev. 2008; 252: 556
    • 57a Valente AA. Moreira J. Lopes AD. Pillinger M. Nunes CD. Romão CC. Kühn FE. Gonçalves IS. New J. Chem. 2004; 28: 308
    • 57b Petrovski Z. Pillinger M. Valente AA. Gonçalves IS. Hazell A. Romão CC. J. Mol. Catal. A: Chem. 2005; 227: 67
    • 57c Günyar A. Betz D. Drees M. Herdtweck E. Kühn FE. J. Mol. Catal. A: Chem. 2010; 331: 117
    • 57d Amarante TR. Neves P. Almeida-Paz FA. Valente AA. Pillinger M. Gonçalves IS. Dalton Trans. 2014; 43: 6059
    • 57e Oliveira TS. M. Gomes AC. Lopes AD. Lourenco JP. Almeida-Paz FA. Pillinger M. Gonçalves IS. Dalton Trans. 2015; 44: 14139
    • 58a Kühn FE. Groarke M. Bencze E. Herdtweck E. Prazeres A. Santos AM. Calhorda MJ. Romão CC. Gonçalves IS. Lopes AD. Pillinger M. Chem. Eur. J. 2002; 8: 2370
    • 58b Veiros LF. Prazeres A. Costa PJ. Romão CC. Kühn FE. Calhorda MJ. Dalton Trans. 2006; 1383

      See, for instance:
    • 59a Ref. 57b
    • 59b Gago S. Rodríguez-Borges JE. Teixeira C. Santos AM. Zhao J. Pillinger M. Nunes CD. Petrovski Z. Santos TM. Kühn FE. Romão CC. Gonçalves IS. J. Mol. Catal. A: Chem. 2005; 236: 1
  • 60 Sanz R. Aguado R. Pedrosa MR. Arnáiz FJ. Synthesis 2002; 856
  • 61 Jeyakumar K. Chand DK. Tetrahedron Lett. 2006; 47: 4573
  • 62 Marom H. Antonov S. Popowski Y. Gozin M. J. Org. Chem. 2011; 76: 5240
    • 63a Jeyakumar K. Chand DK. Appl. Organomet. Chem. 2006; 20: 840
    • 63b Jeyakumar K. Chand DK. Open Catal. J. 2008; 1: 6
  • 64 Jeyakumar K. Chand DK. Synthesis 2009; 306
  • 65 García N. Rubio-Presa R. García-García P. Fernández-Rodríguez MA. Pedrdosa MR. Arnáiz FJ. Sanz R. Green Chem. 2016; 18: 2335
  • 66 Ishihara K. Sakakura A. Hatano M. Synlett 2007; 686
  • 67 Chen C.-T. Kuo J.-H. Li C.-H. Barhate NB. Hon S.-W. Li T.-W. Chao S.-D. Liu C.-C. Li Y.-C. Chang I.-H. Lin J.-S. Liu C.-J. Chou Y.-C. Org. Lett. 2001; 3: 3729
  • 68 Chen C.-T. Kuo J.-H. Pawar VD. Munot YS. Weng S.-S. Ku C.-H. Liu C.-Y. J. Org. Chem. 2005; 70: 1188
  • 69 Chen C.-T. Weng S.-S. Kao J.-Q. Lin C.-C. Jan M.-D. Org. Lett. 2005; 7: 3343
  • 70 Weng S.-S. Lin Y.-D. Chen C.-T. Org. Lett. 2006; 8: 5633
  • 71 Repetto E. Marino C. Uhrig ML. Varela O. Eur. J. Org. Chem. 2008; 540
  • 72 Liu C.-Y. Chen H.-L. Ko C.-M. Chen C.-T. Tetrahedron 2011; 67: 872
    • 73a Tomé CM. Oliveira MC. Pillinger M. Gonçalves IS. Abrantes M. Dalton Trans. 2013; 42: 3901
    • 73b Gomes AC. Pillinger M. Nunes P. Gonçalves IS. Abrantes M. J. Organomet. Chem. 2014; 760: 42
  • 74 Salles L. Nixon AF. Russell NC. Clarke R. Pogorzelec P. Cole-Hamilton DJ. Tetrahedron: Asymmetry 1999; 10: 1471
  • 75 Jeyakumar K. Chand D. Synthesis 2008; 807
  • 76 Gomes AC. Neves P. Cunha-Silva L. Valente AA. Gonçalves IS. Pillinger M. Catal. Sci. Technol. 2016; 6: 5207
  • 77 Marín I. Matheu MI. Díaz Y. Castillón S. Adv. Synth. Catal. 2010; 352: 3407
  • 78 Jeyakumar K. Chand D. Synthesis 2008; 1685
  • 79 Goswami S. Maity AC. Tetrahedron Lett. 2008; 49: 3092
  • 80 Rana KK. Guin C. Jana S. Roy SC. Tetrahedron Lett. 2003; 44: 8597
  • 81 de Noronha RG. Fernandes AC. Romão CC. Tetrahedron Lett. 2009; 50: 1407
  • 83 de Noronha RG. Costa PJ. Romao CC. Calhorda MJ. Fernandes AC. Organometallics 2009; 28: 6206
  • 84 de Noronha RG. Romão CC. Fernandes AC. Catal. Commun. 2011; 12: 337
  • 85 Guggilapu SD. Prajapti SK. Nagarsenkar A. Lalita G. Vegi GM. N. Babu BN. New J. Chem. 2016; 40: 838
  • 86 Pereira JG. Sousa SC. A. Fernandes AC. ChemistrySelect 2017; 2: 4516