CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 370-377
DOI: 10.1055/s-0037-1610283
account
Copyright with the author

Symmetric Multiple Carbohelicenes

Kenta Kato
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan   Email: ysegawa@nagoya-u.jp
,
Yasutomo Segawa*
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan   Email: ysegawa@nagoya-u.jp
b   JST-ERATO, Itami Molecular Nanocarbon Project, Chikusa, Nagoya 464-8602, Japan   Email: itami@chem.nagoya-u.ac.jp
,
Kenichiro Itami*
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan   Email: ysegawa@nagoya-u.jp
b   JST-ERATO, Itami Molecular Nanocarbon Project, Chikusa, Nagoya 464-8602, Japan   Email: itami@chem.nagoya-u.ac.jp
c   Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
› Author Affiliations
This work was supported by the ERATO program from JST (JPMJER1302 to K.I.), the Funding Program for KAKENHI from MEXT (JP16K05771 to Y.S.), a grant-in-aid for Scientific Research on Innovative Areas ‘π-Figuration’ from JSPS (JP17H05149 to Y.S.), and the Noguchi Institute (to Y.S.). K.K. thanks IGER Program in Green Natural Sciences, Nagoya University and a JSPS fellowship for young scientists. Calculations were performed using the resources of the Research Center for Computational Science, Okazaki, Japan. ITbM is supported by the World Premier International Research Center Initiative (WPI), Japan.
Further Information

Publication History

Received: 21 July 2018

Accepted after revision: 24 August 2018

Publication Date:
26 September 2018 (online)


Abstract

This account focuses on the synthesis and structures of symmetric multiple carbohelicenes; i.e., fully fused polycyclic aromatic hydrocarbons containing two or more symmetric helicene moieties. Synergies of the multiplexed helicene structures within a π-system generate a number of local minima and transition states between each state. Based on recent studies on multiple helicenes, a systematic molecular design for further multiplexed symmetric helicenes is proposed in the last section of this article.

 
  • References and Notes


    • For reviews on helicenes, see:
    • 1a Helicene Chemistry From Synthesis to Applications . Chen C.-F. Sheb Y. Springer; Berlin: 2017
    • 1b Shen Y. Chen C.-F. Chem. Rev. 2012; 112: 1463
    • 1c Gingras M. Chem. Soc. Rev. 2013; 42: 968
    • 1d Gingras M. Félix G. Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
    • 1e Gingras M. Chem. Soc. Rev. 2013; 42: 1051
    • 1f Hasan M. Brovrkoovvko V. Symmetry 2018; 10: 10
  • 2 Cahn RS. Ingold C. Prelog V. Angew. Chem. Int. Ed. Engl. 1966; 5: 385

    • For isomerization barriers of carbo[n]helicenes, see:
    • 3a Janke RH. Haufe G. Würthwein E.-U. Borkent JH. J. Am. Chem. Soc. 1996; 118: 6031
    • 3b Grimme S. Peyerimhoff SD. Chem. Phys. 1996; 204: 411
    • 3c Goedicke C. Stegemeyer H. Tetrahedron Lett. 1970; 937
    • 3d Martin RH. Marchant MJ. Tetrahedron Lett. 1972; 3707
    • 3e Martin RH. Marchant MJ. Tetrahedron 1973; 30: 347
    • 3f Martin RH. Marchant MJ. Tetrahedron 1974; 30: 347
    • 3g Ravat P. Hinkelmann R. Steinebrunner D. Prescimone A. Bodoky I. Jurícěk M. Org. Lett. 2017; 19: 3707
    • 3h Barroso J. Cabellos JL. Pan S. Murillo F. Zarate X. Fernandez-Herrera MA. Merino G. Chem. Commun. 2018; 188
  • 4 For this study, the energy values were calculated or re-calculated at the B3LYP/6-31G (d) level of theory.

    • For long carbohelicenes, see:
    • 5a Flammang-Barbieux M. Nasielski J. Martin RH. Tetrahedron Lett. 1967; 743
    • 5b Martin RH. Morren G. Schurter JJ. Tetrahedron Lett. 1969; 3683
    • 5c Martin RH. Baes M. Tetrahedron 1975; 31: 2135
    • 5d Sehnal P. Stará IG. Šaman D. Tichý M. Míšek J. Cvačka J. Rulíšek L. Chocholoušová J. Vacek J. Goryl G. Szymonski M. Císařová I. Starý I. Proc. Natl. Acad. Sci. USA 2009; 106: 13169
    • 5e Mori K. Murase T. Fujita M. Angew. Chem. Int. Ed. 2015; 54: 6847
    • 5f Murayama K. Shibata Y. Sugiyama H. Uekusa H. Tanaka K. J. Org. Chem. 2017; 82: 1136
    • 5g Satoh M. Shibata Y. Tanaka K. Chem. Eur. J. 2018; 24: 5434

      For laterally extended helicenes, see:
    • 6a Vingiello FA. Henson PD. J. Org. Chem. 1965; 30: 2842
    • 6b Laarhoven WH. Cuppen ThJ. H. M. Nivard RJ. F. Tetrahedron 1970; 26: 4865
    • 6c Laarhoven WH. Nivard RJ. F. Tetrahedron 1976; 32: 2445
    • 6d Jančařík A. Rybáček J. Cocq K. Chocholoušová JV. Vacek J. Pohl R. Bednárová L. Fiedler P. Císařová I. Stará IG. Starý I. Angew. Chem. Int. Ed. 2013; 52: 9970
    • 6e Bédard A.-C. Vlassova A. Hernandez-Perez AC. Bessette A. Hanan GS. Heuft MA. Collins SK. Chem. Eur. J. 2013; 19: 16295
    • 6f Hu J.-Y. Paudel A. Seto N. Feng X. Era M. Matsumoto T. Tanaka J. Elsegood MR. J. Redshaw C. Yamato T. Org. Biomol. Chem. 2013; 11: 2186
    • 6g Buchta M. Rybáček J. Jančařík A. Kudale AA. Buděšínský M. Chocholoušová JV. Vacek J. Bednárová L. Císařová I. Bodwell GJ. Starý I. Stará IG. Chem. Eur. J. 2015; 21: 8910
    • 6h Daigle M. Miao D. Lucotti A. Tommasini M. Morin J.-F. Angew. Chem. Int. Ed. 2017; 56: 6213
    • 6i Nakakuki Y. Hirose T. Sotome H. Miyasaka H. Matsuda K. J. Am. Chem. Soc. 2018; 140: 4317

      For thiahelicenes, see:
    • 7a Yamada K. Ogashiwa S. Tanaka H. Nakagawa H. Kawazura H. Chem. Lett. 1981; 343
    • 7b Caronna T. Sinisi R. Catellani M. Malpezzi L. Meille SV. Mele A. Chem. Commun. 2000; 1139
    • 7c Miyasaka M. Pink M. Olankitwanit A. Rajca S. Rajca A. Org. Lett. 2012; 14: 3076

      For azahelicenes, see:
    • 8a Bazzini C. Brovelli S. Caronna T. Gambarotti C. Giannone M. Macchi P. Meinard F. Mele A. Panzeri W. Recupero F. Sironi A. Tubino R. Eur. J. Org. Chem. 2005; 1247
    • 8b Nakano K. Hidehira Y. Takahashi K. Hiyama T. Nozaki K. Angew. Chem. Int. Ed. 2005; 44: 7136
    • 8c Goto K. Yamaguchi R. Hiroto S. Ueno H. Kawai T. Shinokubo H. Angew. Chem. Int. Ed. 2012; 51: 10333
    • 8d Chocholoušová JV. Vacek J. Andronova A. Míšek J. Songis O. Šámal M. Stará IG. Meyer M. Bourdillon M. Pospíšil L. Starý I. Chem. Eur. J. 2014; 20: 877

      For other representative heterohelicenes, see:
    • 9a Dreher SD. Weix DJ. Katz TJ. J. Org. Chem. 1999; 64: 3671
    • 9b Fukawa N. Osaka T. Noguchi K. Tanaka K. Org. Lett. 2010; 12: 1324
    • 9c Hatakeyama T. Hashimoto S. Nakamura M. Org. Lett. 2011; 13: 2130
    • 9d Hatakeyama T. Hashimoto S. Oba T. Nakamura M. J. Am. Chem. Soc. 2012; 134: 19600
    • 9e Nakano K. Oyama H. Nishimura Y. Nakasako S. Nozaki K. Angew. Chem. Int. Ed. 2012; 51: 695
    • 9f Oyama H. Nakano K. Harada T. Kuroda R. Naito M. Nobusawa K. Nozaki K. Org. Lett. 2013; 15: 2104
    • 9g Gouin J. Bürgi T. Guénée L. Lacour J. Org. Lett. 2014; 16: 3800
    • 9h Miyamoto F. Nakatsuka S. Yamada K. Nakayama K. Hatakeyama T. Org. Lett. 2015; 17: 6158
    • 9i Sundar MS. Bedekar AV. Org. Lett. 2015; 17: 5808
    • 9j Murayama K. Oike Y. Furumi S. Takeuchi M. Noguchi K. Tanaka K. Eur. J. Org. Chem. 2015; 1409
    • 9k Schickedanz K. Trageser T. Bolte M. Lerner H.-W. Wagner M. Chem. Commun. 2015; 15808
    • 9l Yamamoto Y. Sakai H. Yuasa J. Araki Y. Wada T. Sakanoue T. Takenobu T. Kawai T. Hasobe T. J. Phys. Chem. C 2016; 120: 7421
    • 9m Wang T. Zhang H. Pink M. Olankitwanit A. Rajca S. Rajca A. J. Am. Chem. Soc. 2016; 138: 7298
  • 10 For a review on multiple helicenes, see: Li C. Yang Y. Miao Q. Chem. Asian J. 2018; 13: 884

    • For multiple helicenes that contain five-membered rings, see:
    • 11a Dutta AK. Linden A. Zoppi L. Baldridge KK. Siegel JS. Angew. Chem. Int. Ed. 2015; 54: 10792
    • 11b Geng X. Mague JT. Pascal RA. Jr. J. Org. Chem. 2015; 80: 4824
    • 11c Gu X. Xu X. Li H. Liu Z. Miao Q. J. Am. Chem. Soc. 2015; 137: 16203
    • 11d Ma J. Liu J. Baumgarten M. Fu Y. Tan Y.-Z. Schellhammer KS. Ortmann F. Cuniberti G. Komber H. Berger R. Müllen K. Feng X. Angew. Chem. Int. Ed. 2017; 56: 3280
    • 11e Liu J. Ma J. Zhang K. Ravat P. Machata P. Avdoshenko S. Hennersdorf F. Komber H. Pisula W. Weigand JJ. Popov AA. Berger R. Müllen K. Feng X. J. Am. Chem. Soc. 2017; 139: 7513

      For multiple heterohelicenes, see:
    • 12a Zhang Y. Petersen JL. Wang KK. Org. Lett. 2007; 9: 1025
    • 12b Nakamura K. Furumi S. Takeuchi M. Shibuya T. Tanaka K. J. Am. Chem. Soc. 2014; 136: 5555
    • 12c Sakamaki D. Kumano D. Yashima E. Seki S. Angew. Chem. Int. Ed. 2015; 54: 5404
    • 12d Katayama T. Nakatsuka S. Hirai H. Yasuda N. Kumar J. Kawai T. Hatakeyama T. J. Am. Chem. Soc. 2016; 138: 5210
    • 12e Wang X.-Y. Wang X.-C. Narita A. Wagner M. Cao X.-Y. Feng X. Müllen K. J. Am. Chem. Soc. 2016; 138: 12783
    • 12f Wang X.-Y. Narita A. Zhang W. Feng X. Müllen K. J. Am. Chem. Soc. 2016; 138: 9021
    • 12g Krzeszewski M. Kodama T. Espinoza EM. Vullev VI. Kubo T. Gryko DT. Chem. Eur. J. 2016; 22: 16478
    • 12h Fujikawa T. Segawa Y. Itami K. J. Am. Chem. Soc. 2016; 138: 3587
    • 12i Fujikawa T. Mitoma N. Wakamiya A. Saeki A. Segawa Y. Itami K. Org. Biomol. Chem. 2017; 15: 4697

      For other polycyclic arenes that contain helicene moieties, see:
    • 13a Peña D. Cobas A. Pérez D. Guitián E. Castedo L. Org. Lett. 2003; 5: 1863
    • 13b Yanney M. Fronczek FR. Henry WP. Beard DJ. Sygula A. Eur. J. Org. Chem. 2011; 6636
    • 13c Eversloh CL. Liu Z.-H. Müller B. Stangl M. Li C. Müllen K. Org. Lett. 2011; 13: 5528
    • 13d Xiao S. Kang SJ. Wu Y. Ahn S. Kim JB. Loo Y.-L. Siegrist T. Steigerwald ML. Li H. Nuckolls C. Chem. Sci. 2013; 4: 2018
    • 13e Arslan H. Uribe-Romo FJ. Smith BJ. Dichtel WR. Chem. Sci. 2013; 4: 3973
    • 13f Kashihara H. Asada T. Kamikawa K. Chem. Eur. J. 2015; 21: 6523
    • 13g Bock H. Huet S. Dechambenoit P. Hillard EA. Durola F. Eur. J. Org. Chem. 2015; 1033
    • 13h Dong M. Fu H. Xiao C. Meng X. Winands T. Ma W. Wei W. Fan B. Huo L. Doltsinis NL. Li Y. Sun Y. Wang Z. J. Am. Chem. Soc. 2016; 32: 10184
    • 13i Yang Y. Yuan L. Shan B. Liu Z. Miao Q. Chem. Eur. J. 2016; 22: 18620
    • 13j Ferreira M. Naulet G. Gallardo H. Dechambenoit P. Bock H. Durola F. Angew. Chem. Int. Ed. 2017; 56: 3379
  • 14 Clar E. Ironside CT. Zander M. J. Chem. Soc. 1959; 142
  • 15 Fujimaki Y. Takekawa M. Fujisawa S. Ohshima S. Sakamoto Y. Polycyclic Aromat. Compd. 2004; 24: 107
  • 16 Marom H. Pogodin S. Agranat I. Polycyclic Aromat. Compd. 2007; 27: 295
    • 17a Laarhoven WH. Cuppen ThJ. H. M. Tetrahedron Lett. 1971; 163
    • 17b Laarhoven WH. de Jong MH. Recl. Trav. Chim. Pays-Bas 1973; 92: 651
  • 18 Martin RH. Eyndels C. Defay N. Tetrahedron 1974; 30: 3339
  • 19 Kashihara H. Asada T. Kamikawa K. Chem. Eur. J. 2015; 21: 6523
  • 20 Fujikawa T. Segawa Y. Itami K. J. Am. Chem. Soc. 2015; 137: 7763
  • 21 Hu Y. Wang X.-Y. Peng P.-X. Wang X.-C. Cao X.-Y. Feng X. Müllen K. Narita A. Angew. Chem. Int. Ed. 2017; 56: 3374
    • 22a Hacker NP. McOmie JF. W. Meunier-Piret J. Van Meerssche M. J. Chem. Soc., Perkin Trans. 1 1982; 19
    • 22b Barnett L. Ho DM. Baldridge KK. Pascal RA. Jr. J. Am. Chem. Soc. 1999; 121: 727
    • 22c Peña D. Pérez D. Guitiań E. Castedo L. Org. Lett. 1999; 1: 1555
    • 22d Peña D. Cobas A. Pérez D. Guitián E. Castedo L. Org. Lett. 2000; 2: 1629
    • 22e Bennett AA. Kopp MR. Wenger E. Willis AC. J. Organomet. Chem. 2003; 667: 8
  • 23 Anirban P. Dechambenoit P. Bock H. Durola F. Angew. Chem. Int. Ed. 2011; 50: 12582
  • 24 Saito H. Uchida A. Watanabe S. J. Org. Chem. 2017; 82: 5663
  • 25 Kato K. Segawa Y. Scott LT. Itami K. Angew. Chem. Int. Ed. 2018; 57: 1337
  • 26 Kawasumi K. Zhang Q. Segawa Y. Scott LT. Itami K. Nat. Chem. 2013; 5: 739
  • 27 Kato K. Segawa Y. Scott LT. Itami K. Chem. Asian J. 2015; 10: 1635
    • 28a Hosokawa T. Takahashi Y. Matsushima T. Watanabe S. Kikkawa S. Azumaya I. Tsurusaki A. Kamikawa K. J. Am. Chem. Soc. 2017; 139: 18512
    • 28b Berezhnaia V. Roy M. Vanthuyne N. Villa M. Naubron J.-V. Rodriguez J. Coquerel Y. Gingra M. J. Am. Chem. Soc. 2017; 139: 18508
  • 29 Zhu Y. Xia Z. Cai Z. Yuan Z. Jiang N. Li T. Wang Y. Guo X. Li Z. Ma S. Zhong D. Li Y. Wang J. J. Am. Chem. Soc. 2018; 140: 4222
  • 30 Clar E. Stephen JF. Tetrahedron 1965; 21: 467