CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 233-239
DOI: 10.1055/s-0037-1610309
feature
Copyright with the author

Silicon Grignard Reagents as Nucleophiles in Transition-Metal-Catalyzed Allylic Substitution

Weichao Xue
,
Martin Oestreich*
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Email: martin.oestreich@tu-berlin.de
› Author Affiliations
This research was supported by the China Scholarship Council (predoctoral fellowship to W.X., 2015–2019) and the Deutsche Forschungsgemeinschaft (Oe 249/15-1). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.
Further Information

Publication History

Received: 24 September 2018

Accepted: 28 September 2018

Publication Date:
22 October 2018 (eFirst)

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

A broad range of transition-metal catalysts is shown to promote allylic substitution reactions of allylic electrophiles with silicon Grignard reagents. The procedure was further elaborated for CuI as catalyst. The regioselectively is independent of the leaving group for primary allylic precursors, favoring α over γ. The stereochemical course of this allylic transposition was probed with a cyclic system, and anti-dia­stereoselectivity was obtained.

Supporting Information

 
  • References


    • For recent reviews, see:
    • 1a Denmark SE. Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
    • 1b Yus M. González-Gόmez JC. Foubelo F. Chem. Rev. 2013; 113: 5595
    • 1c Chabaud L. James P. Landais Y. Eur. J. Org. Chem. 2004; 15: 3173

      For selected examples with Si–Si compounds, see:
    • 2a Hayashi T. Ohno A. Lu S.-j. Matsumoto Y. Fukuyo E. Yanagi K. J. Am. Chem. Soc. 1994; 116: 4221
    • 2b Moser R. Nishikata T. Lipshutz BH. Org. Lett. 2010; 12: 28
    • 2c Selander N. Paasch JR. Szabό KJ. J. Am. Chem. Soc. 2011; 133: 409
    • 2d Larsson JM. Szabό KJ. J. Am. Chem. Soc. 2013; 135: 443

      For selected examples with Si–B compounds, see:
    • 3a Vyas DJ. Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 8513
    • 3b Delvos LB. Vyas DJ. Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 4650
    • 3c Takeda M. Shintani R. Hayashi T. J. Org. Chem. 2013; 78: 5007
    • 3d Hazra CK. Irran E. Oestreich M. Eur. J. Org. Chem. 2013; 4903
    • 3e Delvos LB. Hensel A. Oestreich M. Synthesis 2014; 46: 2957
    • 3f Delvos LB. Oestreich M. Synthesis 2015; 47: 924

      For selected examples with silicon zinc reagents, see:
    • 4a Oestreich M. Auer G. Adv. Synth. Catal. 2005; 347: 637
    • 4b Schmidtmann ES. Oestreich M. Chem. Commun. 2006; 3643
    • 4c Vyas DJ. Oestreich M. Chem. Commun. 2010; 46: 568
    • 4d Hensel A. Oestreich M. Chem. Eur. J. 2015; 21: 9062

      For nucleophilic substitution of silicon electrophiles with allylic metal reagents, see:
    • 5a Lennon PJ. Mack DP. Thompson QE. Organometallics 1989; 8: 1121
    • 5b Murakami K. Yorimitsu H. Oshima K. J. Org. Chem. 2009; 74: 1415

      Other methods hinge on the silylation of 1,3-dienes or allenes or, more recently, involve formal C–H bond silylation:
    • 6a Suginome M. Ohmura T. Miyake Y. Mitani S. Ito Y. Murakami M. J. Am. Chem. Soc. 2003; 125: 11174
    • 6b Larsson JM. Zhao TS. Szabό KJ. Org. Lett. 2011; 13: 1888
    • 6c Miller ZD. Li W. Belderrain TR. Montgomery J. J. Am. Chem. Soc. 2013; 135: 15282
    • 6d MeAtee JR. Yap GP. A. Watson DA. J. Am. Chem. Soc. 2014; 136: 10166
    • 6e Nakai S. Matsui M. Shimizu Y. Adachi Y. Obora Y. J. Org. Chem. 2015; 80: 7317
  • 7 Xue W. Shishido R. Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 12141
  • 8 George MV. Peterson DJ. Gilman H. J. Am. Chem. Soc. 1960; 82: 403
  • 9 Fleming I. Higgins D. Lawrence NJ. Thomas AP. J. Chem. Soc., Perkin Trans. 1 1992; 3331
  • 10 For the preparation of syn-16a, see: Watson ID. G. Yudin AK. J. Am. Chem. Soc. 2005; 127: 17516
  • 11 Fleming I. Thomas AP. J. Chem. Soc., Chem. Commun. 1986; 1456
  • 12 Tamao K. Kawachi A. Ito K. J. Am. Chem. Soc. 1992; 82: 3989

    • For recent reviews on the synthesis of silicon-stereogenic silanes, see:
    • 13a Xu L.-W. Angew. Chem. Int. Ed. 2012; 51: 12932
    • 13b Cui Y.-M. Lin Y. Xu L.-W. Coord. Chem. Rev. 2017; 330: 37
    • 13c Shintani R. Synlett 2018; 29: 388
  • 14 Yasui K. Fugami K. Tanaka S. Tamaru Y. J. Org. Chem. 1995; 60: 1365
  • 15 Harris RK. Becker ED. Cabral de Menezes R. Goodfellow SM. Granger P. Pure Appl. Chem. 2001; 73: 1795
  • 16 Kofron WG. Baclawski LM. J. Org. Chem. 1976; 41: 1879
  • 17 Krasovskiy A. Knochel P. Synthesis 2006; 890
  • 18 Fleming I. Rowley M. Cuadrado P. González-Nogal AM. Pulido FJ. Tetrahedron 1989; 45: 413
  • 19 Li Z. Yang C. Zheng H. Qiu H. Lai G. J. Organomet. Chem. 2008; 693: 3771
  • 20 Barbero A. Cuadrado P. Gonzalez AM. Pulido FJ. Fleming I. J. Chem. Soc., Perkin Trans. 1 1991; 2811
  • 21 Jorapur YR. Shimada T. Synlett 2012; 23: 1633