Synlett 2019; 30(03): 252-256
DOI: 10.1055/s-0037-1610348
synpacts
© Georg Thieme Verlag Stuttgart · New York

Difunctionalization of the Isocyano Group: Atom-Economic ­Synthesis of Pyrimidinediones

Jian Lang
,
Ye Wei  *
School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. of China   Email: weiye712@swu.edu.cn
› Author Affiliations

This work was supported by the NSFC (No. 21772231, 21302220), the Southwest University (No. SWU118129), the Natural Science Foundation of Chongqing (No. cstc2016jcyjA0008), and Fundamental ­Research Funds for the Central Universities.
Further Information

Publication History

Received: 29 September 2018

Accepted after revision: 12 November 2018

Publication Date:
11 December 2018 (online)

Dedicated to Professor Weiping Su

Abstract

The exploration of synthetic methods involving the formation of new chemical bonds at both the nitrogen and carbons atoms of the isocyano group would largely enrich the structural diversity of compounds. Herein, we disclosed a silver-catalyzed difunctionalization of the isocyano group with cyclic oximes. This method can generate a great array of structurally novel and interesting pyrimidinediones and features excellent atom economy, good functional group compatibility, and amenability to late-stage modifications.

 
  • References

    • 1a Gulevich AV, Zhdanko AG, Orru RV. A, Nenajdenko VG. Chem. Rev. 2010; 110: 5253
    • 1b Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
    • 1c Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 1d Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
  • 2 Kamijo S, Jin T, Yamamoto Y. J. Am. Chem. Soc. 2001; 123: 9453
  • 3 Tong S, Wang Q, Wang M.-X, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 1293
  • 4 Lei C.-H, Wang D.-X, Zhao L, Zhu J, Wang M.-X. J. Am. Chem. Soc. 2013; 135: 4708
    • 5a Kanazawa C, Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2006; 128: 10662
    • 5b Pooi B, Lee J, Choi K, Hirao H, Hong SH. J. Org. Chem. 2014; 79: 9231
    • 5c Wang H, Kumar RK, Yu Y, Zhang L, Liu Z, Liao P, Bi X. Chem. Asian J. 2016; 11: 2841
    • 5d Hu Z, Yuan H, Men Y, Liu Q, Zhang J, Xu X. Angew. Chem. Int. Ed. 2016; 55: 6958
    • 5e Lei Y, Hu Z, Dong J, Liu J, Xu X. Org. Lett. 2017; 19: 5292
    • 6a Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 6b Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 6c Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 6d Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 6e Song B, Xu B. Chem. Soc. Rev. 2017; 46: 1103
    • 7a Zhao B, Liang H.-W, Yang J, Yang Z, Wei Y. ACS Catal. 2017; 7: 5612
    • 7b Yang J, Zhao B, Xi Y, Sun S, Yang Z, Ye Y, Jiang K, Wei Y. Org. Lett. 2018; 20: 1216
    • 8a Okamoto K, Oda T, Kohigashi S, Ohe K. Angew. Chem. Int. Ed. 2011; 50: 11470
    • 8b Okamoto K, Shimbayashi T, Yoshida M, Nanya A, Ohe K. Angew. Chem. Int. Ed. 2016; 55: 7199
  • 9 Nagano T, Okabe T, Kojima H, Kawaguchi M, Nureki O, Ishitani R, Nishimasu H, Aoki J, Tanaka N, Kanda Y, Kioi Y, Takeno Y, Kida S, Yamane J. US 20170158704, 2017
    • 10a Krogsgaard-Larsen P, Christensen SB, Hjeds H. Acta Chem. Scand. 1973; 27: 2802
    • 10b Zard SZ. Chem. Commun. 2002; 1565
    • 11a Maestre L, Sameera WM. C, Díaz-Requejo MM, Maseras F, Pérez PJ. J. Am. Chem. Soc. 2013; 135: 1338
    • 11b Alderson JM, Corbin JR, Schomaker JM. Acc. Chem. Res. 2017; 50: 2147

      Reactions involving nitrene insertion into C–M bonds, see:
    • 12a Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
    • 12b Sau Y.-K, Yi X.-Y, Chan K.-W, Lai C.-S, Williams ID, Leung W.-H. J. Organomet. Chem. 2010; 695: 1399
    • 13a Mumm O. Ber. Dtsch. Chem. Ges. 1910; 43: 886
    • 13b Schwarz JS. P. J. Org. Chem. 1972; 37: 2906
  • 14 Piero SD, Fedele R, Melchior A, Portanova R, Tolazzi M, Zangrando E. Inorg. Chem. 2007; 46: 4683