CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 161-177
DOI: 10.1055/s-0037-1610393
short review
Copyright with the author

Tris(acetylacetonato) Iron(III): Recent Developments and Synthetic Applications

Dennis Lübken
a   Leibniz Universität Hannover, Institute of Organic Chemistry, Schneiderberg 1B, 30167 Hannover, Germany   eMail: markus.kalesse@oci.uni-hannover.de
b   Leibniz Universität Hannover, Centre for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
,
Marius Saxarra
a   Leibniz Universität Hannover, Institute of Organic Chemistry, Schneiderberg 1B, 30167 Hannover, Germany   eMail: markus.kalesse@oci.uni-hannover.de
b   Leibniz Universität Hannover, Centre for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
,
a   Leibniz Universität Hannover, Institute of Organic Chemistry, Schneiderberg 1B, 30167 Hannover, Germany   eMail: markus.kalesse@oci.uni-hannover.de
b   Leibniz Universität Hannover, Centre for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
c   Helmholtz Centre for Infection Research (HZI), Imhoffenstr. 7, 38124 Braunschweig, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 30. Oktober 2018

Accepted: 31. Oktober 2018

Publikationsdatum:
27. November 2018 (online)


This paper is dedicated to Dr. Holger Butenschön (Leibniz Universität Hannover) on the occasion of his 65th birthday.

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

Tris(acetylacetonato) iron(III) [Fe(acac)3] is an indispensable reagent in synthetic chemistry. Its applications range from hydrogen atom transfer to cross-coupling reactions and to use as a Lewis acid. Consequently, the exceptional utility of Fe(acac)3 has been demonstrated in several total syntheses. This short review summarizes the applications of Fe(acac)3 in methodology and catalysis and highlights its use for the synthesis of medicinally relevant structures and in natural product syntheses.

1 Introduction

2 Hydrogen Atom Transfer (HAT)

3 Oxidations and Radical Transformations

4 Synthesis and Use of Alkynes and Allenes

5 Cross-Couplings and Cycloisomerizations

6 Borylations

7 Miscellaneous Reactions

8 Conclusions

 
  • References

    • 1a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 1b For cross-couplings in natural product syntheses, see also: Legros J, Figadère B. Nat. Prod. Rep. 2015; 32: 1541
  • 2 Fürstner A. ACS Cent. Sci. 2016; 2: 778
    • 3a Yoshida I, Kobayashi H, Ueno K. Bull. Chem. Soc. Jpn. 1974; 47: 2203
    • 3b Chaudhuri MK, Ghosh SK. J. Chem. Soc., Dalton Trans. 1983; 839
  • 4 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
    • 5a Simonneau A, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 3556 ; Angew. Chem. 2015, 127, 3626

    • For further reviews on HAT-based olefin functionalization, see:
    • 5b Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 5c Gao S, Qui Y. Sci. China Chem. 2016; 59: 1093
    • 6a Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
    • 6b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
    • 6c Lo JC, Kim D, Pan C.-M, Edwards JT, Yabe Y, Gui J, Qin T, Gutierrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
  • 7 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
  • 8 Dao HT, Li C, Michaudel Q, Maxwell BD, Baran PS. J. Am. Chem. Soc. 2015; 137: 8046
  • 9 Gui J, Pan C.-M, Jin Y, Quin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
  • 10 Deng Z, Chen C, Cui S. RCS Adv. 2016; 6: 93753
    • 11a Beckwith AL. J, Hay BP. J. Am. Chem. Soc. 1989; 111: 230
    • 11b Beckwith AL. J, Hay BP. J. Am. Chem. Soc. 1989; 111: 2674
  • 12 Saladrigas M, Bosch C, Saborit GV, Bonjoch J, Bradshaw B. Angew. Chem. Int. Ed. 2018; 57: 182; Angew. Chem. 2018, 130, 188
  • 13 George DT, Kuenstner EJ, Pronin SV. J. Am. Chem. Soc. 2015; 137: 15410
  • 14 Deng H, Cao W, Liu R, Zhang Y, Liu B. Angew. Chem. Int. Ed. 2017; 56: 5849; Angew. Chem. 2017, 129, 5943
  • 15 Ruider SA, Sandmeier T, Carreira EM. Angew. Chem. Int. Ed. 2015; 54: 2378 ; Angew. Chem. 2015, 127, 2408
  • 16 Tohama M, Tomita T, Kimura M. Tetrahedron Lett. 1973; 44: 4359
  • 17 Kimura M, Muto T. Chem. Pharm. Bull. 1979; 27: 109
  • 18 Muto T, Tanaka J, Miura T, Kimura M. Chem. Pharm. Bull. 1983; 31: 1561
  • 19 Muto T, Tanaka J, Miura T, Kimura M. Chem. Pharm. Bull. 1982; 30: 3172
  • 20 Dell’Anna MM, Mastrorilli P, Nobile CF, Lopez L. J. Mol. Catal. A: Chem. 1996; 111: 33
  • 21 Song H, Kang B, Hong SH. ACS Catal. 2014; 4: 2889
  • 22 Iwata S, Hata T, Urabe H. Adv. Synth. Catal. 2012; 354: 3480
  • 23 Morisson V, Barnier J.-P, Blanco L. Tetrahedron Lett. 1999; 40: 4045
  • 24 Zhao J, Zhou W, Han J, Li G, Pan Y. Tetrahedron Lett. 2013; 54: 6507
  • 25 Zhao J, Fang H, Han J, Pan Y. Beilstein J. Org. Chem. 2013; 9: 1718
  • 26 Mir BA, Banerjee A, Santra SK, Rajamanickam S, Patel BK. Adv. Synth. Catal. 2016; 358: 3471
  • 27 Lehr K, Schulthoff S, Ueda Y, Mariz R, Leseurre L, Gabor B, Fürstner A. Chem. Eur. J. 2015; 21: 219
  • 28 Kessler SN, Bäckvall J.-E. Angew. Chem. Int. Ed. 2016; 55: 3734 ; Angew. Chem. 2016, 128, 3798
  • 29 Fürstner A, Mendez M. Angew. Chem. Int. Ed. 2003; 42: 5355 ; Angew. Chem. 2003, 115, 5513
  • 30 Sherry BD, Fürstner A. Chem. Commun. 2009; 7116
    • 31a Fürstner A, Kattnig E, Lepage O. J. Am. Chem. Soc. 2006; 128: 9194
    • 31b Lepage O, Kattnig E, Fürstner A. J. Am. Chem. Soc. 2004; 126: 15970
  • 32 Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
  • 33 Ilies L, Arslanoglu Y, Matsubara T, Nakamura E. Asian J. Org. Chem. 2018; 7: 1327
  • 34 See: Knochel P. In Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I, Semmelhack MF. Pergamon Press; New York: 1991: 865-911
  • 35 Hojo M, Murakami Y, Aihara H, Sakuragi R, Baba Y, Hosomi A. Angew. Chem. Int. Ed. 2001; 40: 621 ; Angew. Chem. 2001, 113, 641
  • 36 Shirakawa E, Yamagami T, Kimura T, Yamaguchi S, Hayashi T. J. Am. Chem. Soc. 2005; 127: 17164
  • 37 Yamagami T, Shintani R, Shirakawa E, Hayashi T. Org. Lett. 2007; 9: 1045
  • 38 Lu Z, Chai G, Ma S. J. Am. Chem. Soc. 2007; 129: 14546
  • 39 Zhang D, Ready JM. J. Am. Chem. Soc. 2006; 128: 15050
  • 40 Guo S, Liu J, Ma D. Angew. Chem. Int. Ed. 2015; 54: 1298 ; Angew. Chem. 2015, 127, 1314
  • 41 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 42 Kharash MS, Fields EK. J. Am. Chem. Soc. 1941; 63: 2316
    • 43a Smith RS, Kochi JK. J. Org. Chem. 1976; 41: 502
    • 43b Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2002; 41: 609 ; Angew. Chem. 2002, 114, 632
    • 43c Fürstner A, Leitner A, Mendez M, Krause H. J. Am. Chem. Soc. 2002; 124: 13856
    • 43d Hatakeyama T, Hashimoto T, Kathriarachchi KK. A. D. S, Zenmyo T, Seike H, Nakamura M. Angew. Chem. Int. Ed. 2012; 51: 8834 ; Angew. Chem. 2012, 124, 8964
    • 43e Jin M, Adak L, Nakamura M. J. Am. Chem. Soc. 2015; 137: 7128
    • 44a Cassani C, Bergonzini G, Wallentin C.-J. ACS Catal. 2016; 6: 1640
    • 44b Bedford RB. Acc. Chem. Res. 2015; 48: 1485
  • 45 Parchomyk T, Koszinowski K. Chem. Eur. J. 2016; 22: 15609
    • 46a Fabré J.-L, Julia M, Verpeaux J.-N. Tetrahedron Lett. 1982; 23: 2469
    • 46b Dohle W, Kopp F, Cahiez G, Knochel P. Synlett 2001; 1901
    • 46c Dunet G, Knochel P. Synlett 2006; 407
    • 46d Itami K, Higashi S, Mineno M, Yoshida J.-I. Org. Lett. 2004; 7: 1219
  • 47 Xu X, Cheng D, Pei W. J. Org. Chem. 2006; 71: 6637
  • 48 Chen Y, Huang Y, Zhao X, Li Z. Synth. Commun. 2015; 45: 734
  • 49 Adams K, Ball AK, Birkett J, Brown L, Chappell B, Gill DM, Lo PK. T, Patmore NJ, Rice CR, Ryan J, Raubo P, Sweeney JB. Nat. Chem. 2017; 9: 396
  • 50 Munoz SB. III, Daifuku SL, Sears JD, Baker TM, Carpenter SH, Brennessel WW, Neidig ML. Angew. Chem. Int. Ed. 2018; 57: 6496 ; Angew. Chem. 2018, 130, 6606
    • 51a Tee OS, Du X.-X. J. Org. Chem. 1988; 53: 1839
    • 51b Hashmi AS. K, Szeimies G. Chem. Ber. 1994; 127: 1075
    • 51c Seck M, Franck X, Hocquemiller R, Figadère B, Peyrat J.-F, Provot O, Brion J.-D, Alami M. Tetrahedron Lett. 2004; 45: 1881
    • 51d Schneider B, Bonnekessel M, Krause H, Fürstner A. J. Org. Chem. 2004; 69: 3943
    • 51e Silveira CC, Mendes SR, Wolf L. J. Braz. Chem. Soc. 2010; 21: 2138
    • 51f Gülak S, Gieshoff TN, von Wangelin AJ. Adv. Synth. Catal. 2013; 355: 2197
    • 51g Guo W.-J, Wang Z.-X. Tetrahedron 2013; 69: 9580
    • 51h Shakhmaev RN, Sunagatullina AS, Zorin VV. Russ. J. Org. Chem. 2014; 50: 322
    • 51i Piontek A, Szostak M. Eur. J. Org. Chem. 2017; 7271
  • 52 Nishikado H, Nakatsuji H, Ueno K, Nagase R, Tanabe Y. Synlett 2010; 2087
    • 54a Cahiez G, Marquais S. Tetrahedron Lett. 1996; 37: 1773
    • 54b Cahiez G, Chaboche C, Duplais C, Moyeux A. Org. Lett. 2009; 11: 277
  • 55 Czaplik W, Gruppe S, Mayer M, von Wangelin AJ. Chem. Commun. 2010; 46: 6350
  • 56 Piontek A, Bisz E, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 11116 ; Angew. Chem. 2018, 130, 11284
  • 57 Barbier J, Jansen R, Irschik H, Benson S, Gerth K, Böhlendorf B, Höfle G, Reichenbach H, Wegner J, Zeilinger C, Kirschning A, Müller R. Angew. Chem. Int. Ed. 2012; 51: 1256 ; Angew. Chem. 2012, 124, 1282
    • 58a Nagano T, Hayashi T. Org. Lett. 2004; 6: 1297
    • 58b Cahiez G, Habiak V, Duplais C, Moyeux A. Angew. Chem. Int. Ed. 2007; 46: 4363 ; Angew. Chem. 2007, 123, 4442
    • 58c Volla CM. R, Vogel P. Angew. Chem. Int. Ed. 2008; 47: 1305 ; Angew. Chem. 2008, 120, 1325
    • 58d Denmark SE, Cresswell AJ. J. Org. Chem. 2013; 78: 12593
    • 58e Parmar D, Henkel L, Dib J, Rueping M. Chem. Commun. 2015; 51: 2111
  • 59 Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 36: 3437
  • 60 Bedford RB, Brenner PB, Certer E, Carvell TW, Cogswell PM, Gallagher T, Harvey JN, Murphy DM, Neeve EC, Nunn J, Pye DR. Chem. Eur. J. 2014; 20: 7935
    • 61a King AO, Okukado N, Negishi E. Chem. Commun. 1977; 683
    • 61b Hatakeyama T, Nakagawa N, Nakamura M. Org. Lett. 2009; 11: 4496
  • 62 Feng Z, Min Q.-Q, Zhang X. Org. Lett. 2016; 18: 44
  • 63 Miao W, Zhao Y, Ni C, Gao B, Zhang W, Hu J. J. Am. Chem. Soc. 2018; 140: 880
  • 64 Savela R, Majewski M, Leino R. Eur. J. Org. Chem. 2014; 4137
  • 65 Tindall DJ, Krause H, Fürstner A. Adv. Synth. Catal. 2016; 358: 2398
  • 66 Meng X, Li C, Han B, Wang T, Chen B. Tetrahedron 2010; 66: 4029
    • 67a Volla CM. R, Vogel P. Tetrahedron Lett. 2008; 49: 5961
    • 67b Li T, Qu X, Zhu Y, Sun P, Yang H, Shan Y, Zhang H, Liu D, Zhang X, Mao J. Adv. Synth. Catal. 2011; 353: 2731
    • 68a Ottesen LK, Ek F, Olsson R. Org. Lett. 2006; 8: 1771
    • 68b Gøgsig T, Lindhardt AT, Skrydstrup T. Org. Lett. 2009; 11: 4886
  • 69 Chen X, Quan Z.-J, Wand X.-C. Appl. Organomet. Chem. 2015; 29: 296
  • 70 Kubelka T, Slavetinská L, Klepetárová B, Hocek M. Eur. J. Org. Chem. 2010; 2666
  • 71 Kim MJ, Lee J, Kang SY, Lee S.-H, Son E.-J, Jung ME, Lee SH, Song K.-S, Lee MW, Han H.-K, Kim J, Lee J. Bioorg. Med. Chem. Lett. 2010; 20: 3420
    • 72a Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
    • 72b Ilies L, Tsuji H, Nakamura E. Org. Lett. 2009; 11: 3966
    • 72c Ilies L, Okabe J, Yoshikai N, Nakamura E. Org. Lett. 2010; 12: 2838
    • 72d Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Synlett 2010; 313
    • 72e Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2011; 133: 7672
    • 72f Yoshikai N, Asako S, Yamakawa T, Ilies L, Nakamura E. Chem. Asian J. 2011; 6: 3059
    • 73a Yohsokai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925 ; Angew. Chem. 2009, 121, 2969
    • 73b Sirois JJ, Davis R, DeBoef B. Org. Lett. 2014; 16: 868
    • 74a Deb I, Yoshikai N. Org. Lett. 2013; 15: 4254
    • 74b Zhang Z, Li J, Zhang G, Ma N, Liu Q, Liu T. J. Org. Chem. 2015; 80: 6875
    • 75a Shang R, Ilies L, Matsumoto A, Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030
    • 75b Gu Q, Al Mamari HH, Graczyk K, Diers E, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868 ; Angew. Chem. 2014, 126, 3949
    • 75c Asako S, Norinder J, Ilies L, Yoshikai N, Nakamura E. Adv. Synth. Catal. 2014; 356: 1481
    • 75d Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
    • 75e Ilies L, Ichikawa S, Asako S, Matsubara T, Nakamura E. Adv. Synth. Catal. 2015; 357: 2175
    • 75f Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 75g Ilies L, Itabashi Y, Shang R, Nakamura E. ACS Catal. 2017; 7: 89
    • 75h Schmiel D, Butenschön H. Organometallics 2017; 36: 4979
  • 76 Singh PP, Aithagani SK, Yadav M, Singh VP, Vishwakarma RA. J. Org. Chem. 2013; 78: 2639
    • 77a Bistri O, Correa A, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 586 ; Angew. Chem. 2008, 120, 596
    • 77b Qu X, Li T, Zhu Y, Sun P, Yang H, Mao J. Org. Biomol. Chem. 2011; 9: 5043
    • 77c Liu X, Zhang S. Synlett 2011; 268
    • 77d Zhou Q, Su L, Jiang T, Zhang B, Chen R, Jiang H, Ye Q, Zhu M, Han D, Shen J, Dai G, Li Z. Tetrahedron 2014; 70: 1125
  • 78 Nakamura Y, Ilies L, Nakamura E. Org. Lett. 2011; 13: 5998
    • 79a Fiandanese V, Marchese G, Martina V, Ronzini L. Tetrahedron Lett. 1984; 25: 4805
    • 79b Scheiper B, Bonnekessel M, Krause H, Fürstner A. J. Org. Chem. 2004; 69: 3934
  • 80 Lv J, Ge J.-T, Luo T, Dong H. Green Chem. 2018; 20: 1987
  • 81 Savela R, Zawartka W, Leino R. Organometallics 2012; 31: 3199
    • 82a Volla CM. R, Markovic D, Dubbaka SR, Vogel P. Eur. J. Org. Chem. 2009; 6281
    • 82b Mayer M, Czaplik WM, von Wangelin AJ. Adv. Synth. Catal. 2010; 352: 2147
    • 82c Seto C, Otsuka T, Takeuchi Y, Tabuchi D, Nagano T. Synlett 2018; 29: 1211
  • 83 Sekine M, Ilies L, Nakamura E. Org. Lett. 2013; 15: 714
  • 84 Sun C.-L, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 13071 ; Angew. Chem. 2013, 125, 13309
  • 85 Echeverria P.-G, Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 11188 ; Angew. Chem. 2016, 128, 11354
  • 86 Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568
    • 87a Takacs JM, Anderson LG, Madhavan GV. B, Creswell MW, Seely FL, Devroy WF. Organometallics 1986; 5: 2395
    • 87b Takacs BE, Takacs JM. Tetrahedron Lett. 1990; 31: 2865
  • 88 Atack TC, Lecker RM, Cook SP. J. Am. Chem. Soc. 2014; 136: 9521
  • 89 Yoshida T, Ilies L, Nakamura E. ACS Catal. 2017; 7: 3199
  • 90 Labre F, Gimbert Y, Bannwarth P, Olivero S, Duñach E, Chavant PY. Org. Lett. 2014; 16: 2366
  • 91 Tamang SR, Findlater M. J. Org. Chem. 2017; 82: 12857
  • 92 Kirihara M, Suzuki S, Ishihara N, Yamazaki K, Akiyama T, Ishizuka Y. Synthesis 2017; 49: 2009
  • 93 Kirihara M, Suzuki S, Ishizuka Y, Yamazaki K, Matsushima R, Suzuki T, Iwai T. Tetrahedron Lett. 2013; 54: 5477
  • 94 Weng S.-S, Ke C.-S, Chen F.-K, Lyu Y.-F, Lin G.-Y. Tetrahedron Lett. 2011; 67: 1640
  • 95 Quintard A, Rodriguez J. Chem. Eur. J. 2015; 21: 14717
  • 96 DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
  • 97 Hayashi T, Saski K. Chem. Lett. 2011; 40: 492
  • 98 Greenhalgh MD, Kolodziej A, Sinclair F, Thomas SP. Organometallics 2014; 33: 5811
    • 99a Chopade MU, Chopade AU. J. Chem. Pharm. Res. 2015; 7: 466
    • 99b Chopade UM, Chopade AU, Patil HS. Int. J. Curr. Res. 2016; 8: 28339
  • 100 Pehlivan L, Métay E, Laval S, Dayoub W, Demonchaux P, Mignani G, Lemaire M. Tetrahedron Lett. 2010; 51: 1939
  • 101 Cettolin M, Bai X, Lübken D, Gatti M, Facchini SV, Piarulli U, Pignataro L, Gennari C. Eur. J. Org. Chem. 2018; DOI: in press; 10.1002/ejoc.201801348; and references therein.
  • 102 Knölker H.-J, Baum E, Goesmann H, Klauss R. Angew. Chem. Int. Ed. 1999; 38, 2064 ; Angew. Chem. 1999, 111, 2196
  • 103 Mancheño OG, Bolm C. Org. Lett. 2006; 8: 2349
  • 104 Williamson KS, Yoon TP. J. Am. Chem. Soc. 2010; 132: 4570
  • 105 Wang R, Bao W. Tetrahedron 2015; 71: 6997
  • 106 Miranda PO, Carballo RM, Martin VS, Padrón JI. Org. Lett. 2009; 11: 357
  • 107 Chan SL.-F, Low K.-H, Yang C, Cheung SH.-F, Che C.-M. Chem. Eur. J. 2011; 17: 4709