CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 194-202
DOI: 10.1055/s-0037-1610411
feature
Copyright with the author

Electrophilic Activation of Amides for the Preparation of Poly­substituted Pyrimidines

Tobias Stopka ◊
,
Pauline Adler ◊
,
Gerhard Hagn
,
Haoqi Zhang
,
Veronica Tona
,
University of Vienna, Institute of Organic Chemistry, Währinger Strasse 38, 1090 Vienna, Austria   Email: nuno.maulide@univie.ac.at
› Author Affiliations
Funding by the European Research Council (ERC CoG VINCAT 682002) and the FWF (Project 30226) is acknowledged.
Further Information

Publication History

Received: 10 November 2018

Accepted: 16 November 2018

Publication Date:
07 December 2018 (eFirst)

These authors contributed equally.

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

In this article we describe the straightforward synthesis of polysubstituted pyrimidines by electrophilic activation of secondary amides in the presence of alkynes. An unusual mechanistic detour leading to pyridine derivatives as products is also presented and briefly discussed.

Supporting Information

 
  • References

  • 1 Joule JA, Mills K. Heterocyclic Chemistry . Wiley; Hoboken, NJ: 2009. 5th ed.
    • 2a Mohana Roopan S, Sompalle R. Synth. Commun. 2016; 46: 645
    • 2b Walker SR, Carter EJ, Huff BC, Morris JC. Chem. Rev. 2009; 109: 3080
    • 2c Gompper R, Mair H.-J, Polborn K. Synthesis 1997; 696
    • 2d Itami K, Yamazaki D, Yoshida J. J. Am. Chem. Soc. 2004; 126: 15396
    • 2e Lagoja IM. Chem. Biodiversity 2005; 2: 1
    • 2f Panneer Selvam T, Richa James C, Vijaysarathy Dniandev P, Karyn Valzita S. Res. Pharm. 2012; 2: 1

      For a review, see:
    • 3a Gore RP, Rajput AP. Drug Invent. Today 2013; 5: 148

    • For selected examples, see:
    • 3b Wang R, Guan W, Han Z.-B, Liang F, Suga T, Bi X, Nishide H. Org. Lett. 2017; 19: 2358
    • 3c Fandrick DR, Reinhardt D, Desrosiers J.-N, Sanyal S, Fandrick KR, Ma S, Grinberg N, Lee H, Song JJ, Senanayake CH. Org. Lett. 2014; 16: 2834
    • 3d Chu X.-Q, Cao W.-B, Xu X.-P, Ji S.-J. J. Org. Chem. 2017; 82: 1145
    • 3e Deibl N, Kempe R. Angew. Chem. Int. Ed. 2017; 56: 1663
    • 3f Stonehouse J, Chekmarev D, Ivanova N, Lang S, Pairaudeau G, Smith N, Stocks M, Sviridov S, Utkina L. Synlett 2008; 100
    • 3g Reddy LS, Reddy TR, Reddy NC. G, Mohan RB, Lingappa Y. Synthesis 2013; 45: 75
    • 3h Guo W, Li C, Liao J, Ji F, Liu D, Wu W, Jiang H. J. Org. Chem. 2016; 81: 5538
    • 3i Guo W, Liao J, Liu D, Li J, Ji F, Wu W, Jiang H. Angew. Chem. Int. Ed. 2017; 56: 1289
    • 4a Fuji M, Obora Y. Org. Lett. 2017; 19: 5569
    • 4b Liu D, Nie Q, Cai M. Tetrahedron 2018; 74: 3020
    • 4c Satoh Y, Yasuda K, Obora Y. Organometallics 2012; 31: 5235
    • 4d Yang L, Hua R. Chem. Lett. 2013; 42: 769
    • 4e You X, Yu S, Liu Y. Organometallics 2013; 32: 5273
  • 5 Xie L.-G, Niyomchon S, Mota AJ, González L, Maulide N. Nat. Commun. 2016; 7: 10914
    • 6a Ahmad OK, Hill MD, Movassaghi M. J. Org. Chem. 2009; 74: 8460
    • 6b Movassaghi M, Hill MD. J. Am. Chem. Soc. 2006; 128: 14254
    • 6c Movassaghi M, Hill MD. Nat. Protoc. 2007; 2: 2018
    • 7a Falmagne J.-B, Escudero J, Taleb-Sahraoui S, Ghosez L. Angew. Chem., Int. Ed. Engl. 1981; 20: 879
    • 7b Charette AB, Grenon M. Can. J. Chem. 2001; 79: 1694
    • 7c Kaiser D, Maulide N. J. Org. Chem. 2016; 81: 4421
    • 7d Ruider S, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856

      For our recent work on amide activation with triflic anhydride, see:
    • 8a Tona V, de la Torre A, Padmanaban M, Ruider S, González L, Maulide N. J. Am. Chem. Soc. 2016; 138: 8348
    • 8b Tona V, Maryasin B, de la Torre A, Sprachmann J, González L, Maulide N. Org. Lett. 2017; 19: 2662
    • 8c de la Torre A, Kaiser D, Maulide N. J. Am. Chem. Soc. 2017; 139: 6578
    • 8d Shaaban S, Tona V, Peng B, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 10938
    • 8e Di Mauro G, Maryasin B, Kaiser D, Shaaban S, González L, Maulide N. Org. Lett. 2017; 19: 3815
    • 8f Kaiser D, Teskey CJ, Adler P, Maulide N. J. Am. Chem. Soc. 2017; 139: 16040
    • 9a Huang P.-Q, Huang Y.-H, Geng H, Ye J.-L. Sci. Rep. 2016; 6: 28801
    • 9b Medley JW, Movassaghi M. J. Org. Chem. 2009; 74: 1341
  • 10 It is likely that the 2 equivalents of cyclopentyl carbocation eliminated ultimately lead to cyclopentene by proton loss (E1). Given the volatility of cyclopentene, it was not possible to detect its presence in the reaction mixture.
    • 12a Friedlaender P. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
    • 12b Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras M. doC, Soriano E. Chem. Rev. 2009; 109: 2652
  • 13 Dihydropyridine 4 has been detected by HRMS in several reactions but was never isolated.
  • 14 Charman HB, Rowe JM. J. Chem. Soc. D 1971; 476
  • 15 Apsunde T, Trudell M. Synthesis 2014; 46: 230
  • 16 Kokare N, Nagawade R, Rane V, Shinde D. Synthesis 2007; 766
  • 17 Fang C, Qian W, Bao W. Synlett 2008; 2529
  • 18 Jeffrey JL, Bartlett ES, Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 2194
  • 19 Qu G.-R, Song Y.-W, Niu H.-Y, Guo H.-M, Fossey JS. RSC Adv. 2012; 2: 6161
  • 20 Nordeman P, Odell LR, Larhed M. J. Org. Chem. 2012; 77: 11393
  • 21 Zhou L, Lu W. Org. Lett. 2014; 16: 508
  • 22 Huang H, Morgan CM, Asolkar RN, Koivunen ME, Marrone PG. J. Agric. Food Chem. 2010; 58: 9994
  • 23 Fuji M, Obora Y. Org. Lett. 2017; 19: 5569
  • 24 Pourzal A.-A. Synthesis 1983; 717
  • 25 Liu J, Pan L, Peng Q, Qin A. Molecules 2017; 22: 1679l