Synlett 2018; 29(18): 2331-2336
DOI: 10.1055/s-0037-1610432
synpacts
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Atom-Transfer C(sp3)–H Oxidation

Shea L. Johnson
Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA   Email: hilinski@virginia.edu
,
Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA   Email: hilinski@virginia.edu
,
Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA   Email: hilinski@virginia.edu
› Author Affiliations
This work was supported by the University of Virginia, the ACS ­Petroleum Research Fund (ACS PRF#56158-DNI), and the National ­Institute of General Medical Sciences of the NIH (GM124092).
Further Information

Publication History

Received: 21 April 2018

Accepted after revision: 22 May 2018

Publication Date:
27 June 2018 (eFirst)

Abstract

Predictably site-selective catalytic methods for intermolecular C(sp3)–H hydroxylation and amination hold great promise for the synthesis and late-stage modification of complex molecules. Transition-metal catalysis has been the most common approach for early investigations of this type of reaction. In comparison, there are far fewer ­reports of organocatalytic methods for direct oxygen or nitrogen insertion into C–H bonds. Herein, we provide an overview of early efforts in this area, with particular emphasis on our own recent development of an iminium salt that catalyzes both oxygen and nitrogen insertion.

1 Introduction

2 Background: C–H Oxidation Capabilities of Heterocyclic Oxidants

3 Oxaziridine-Mediated Catalytic Hydroxylation

4 Dioxirane-Mediated Catalytic Hydroxylation

5 Iminium Salt Catalysis of Hydroxylation and Amination

6 Conclusion and Outlook

 
  • References and Notes


    • For selected recent examples, see:
    • 1a Burg F. Gicquel M. Breitenlechner S. Pöthig A. Bach T. Angew. Chem. Int. Ed. 2018; 57: 2953
    • 1b Olivio G. Farinelli G. Barbieri A. Lanzalunga O. Di Stefano S. Costas M. Angew. Chem. Int. Ed. 2017; 56: 16347
    • 1c Mack JB. C. Gipson JD. Du Bois J. Sigman MS. J. Am. Chem. Soc. 2017; 139: 9503
    • 1d Milan M. Bietti M. Costas M. ACS Cent. Sci. 2017; 3: 196
    • 1e Mbofana CT. Chong E. Lawniczak J. Sanford MS. Org. Lett. 2016; 18: 4258
    • 1f Howell JM. Feng K. Clark JR. Trzepkowski LJ. White MC. J. Am. Chem. Soc. 2015; 137: 14590
    • 1g Oloo WN. Que LJr. Acc. Chem. Res. 2015; 48: 2612

      For selected recent examples, see:
    • 2a Chiappini ND. Mack JB. C. Du Bois J. Angew. Chem. Int. Ed. 2018; 57: 4956
    • 2b Darses B. Rodrigues R. Neuville L. Mazurais M. Dauban P. Chem. Commun. 2017; 53: 493
    • 2c Hazelard D. Nocquet P.-A. Compain P. Org. Chem. Front. 2017; 4: 2500
    • 2d Park Y. Kim Y. Chang S. Chem. Rev. 2017; 117: 9247
    • 2e Dolan NS. Scamp RJ. Yang T. Berry JF. Schomaker JM. J. Am. Chem. Soc. 2016; 138: 14658
    • 2f Bess EN. DeLuca RJ. Tindall DJ. Oderinde MS. Roizen JL. Du Bois J. Sigman MS. J. Am. Chem. Soc. 2014; 136: 5783
    • 2g Tran BL. Li B. Driess M. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
    • 2h Roizen JL. Zalatan DN. Bois DJ. Angew. Chem. Int. Ed. 2013; 52: 11343
    • 2i Liu Y. Guan X. Wong EL.-M. Liu P. Huang J.-S. Che C.-M. J. Am. Chem. Soc. 2013; 135: 7194
    • 2j Nishioka Y. Uchida T. Katsuki T. Angew. Chem. Int. Ed. 2013; 52: 1739
  • 3 White MC. Science 2012; 335: 807
  • 4 Wong OA. Shi Y. Chem. Rev. 2008; 108
  • 5 Yang D. Wong MK. Wang XC. J. Am. Chem. Soc. 1998; 120: 6611
  • 6 Murray RW. Jeyaraman R. Mohan L. J. Am. Chem. Soc. 1986; 108: 2470
  • 7 Mello R. Florentino M. Fusco C. Curci R. J. Am. Chem. Soc. 1989; 111: 6749
  • 8 Curci R. D’Accolti L. Fusco C. Acc. Chem. Res. 2006; 39: 1
  • 9 Petrov VA. Resnati G. Chem. Rev. 1996; 96: 1809
  • 10 Arnone A. Foletto S. Metrangolo P. Pregnolato M. Resnati G. Org. Lett. 1999; 1: 281
    • 11a Zhou Z. Ma Z. Behnke NE. Gao H. Kürti L. J. Am. Chem. Soc. 2017; 139: 115
    • 11b Gao H. Zhou Z. Kwon D.-H. Coombs J. Jones S. Behnke NE. Ess DH. Kürti L. Nat. Chem. 2017; 9: 681
  • 12 Washington I. Houk KN. Armstrong A. J. Org. Chem. 2003; 68: 6497
  • 13 Brodsky BH. Du Bois J. J. Am. Chem. Soc. 2005; 127: 15391
  • 14 Litvinas ND. Brodsky BH. Du Bois J. Angew. Chem. Int. Ed. 2009; 48: 4513
  • 15 Adams AM. Du Bois J. Chem. Sci. 2014; 5: 656
  • 16 Pierce CJ. Hilinski MK. Org. Lett. 2014; 16: 6504
  • 17 Shuler WG. Johnson SL. Hilinski MK. Org. Lett. 2017; 19: 4790
  • 18 Wang D. Shuler WG. Pierce CJ. Hilinski MK. Org. Lett. 2016; 18: 3826
  • 19 Dantignana V. Milan M. Cussó O. Company A. Bietti M. Costas M. ACS Cent. Sci. 2017; 3: 1350
  • 20 Allen JM. Lambert TH. Tetrahedron 2014; 70: 4111
  • 21 Combee LA. Raya B. Wang D. Hilinski MK. Chem. Sci. 2018; 9: 935
  • 22 A mass consistent with a diaziridinium species derived from 19 was observed along with major fragments consistent with its formation. Numerous attempts to isolate compounds arising from the reaction of 19 with PhINTs failed due to instability of the products.
    • 23a Guthikonda K. Du Bois J. J. Am. Chem. Soc. 2002; 124: 13672
    • 23b Barrett AG. M. Betts MJ. Fenwick A. J. Org. Chem. 1985; 50: 169