Synlett 2018; 29(18): 2337-2341
DOI: 10.1055/s-0037-1610550
synpacts
© Georg Thieme Verlag Stuttgart · New York

Uncovering Multifaceted Iodonium Ylides: Versatile Reactivity Enables Cyclization of Simple Arylamines

Liang Zhang
School of Chemistry and Chemical Engineering & Key Laboratory of the Colloid and Interface Chemistry, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, P. R. of China   Email: yaowang@sdu.edu.cn
,
School of Chemistry and Chemical Engineering & Key Laboratory of the Colloid and Interface Chemistry, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, P. R. of China   Email: yaowang@sdu.edu.cn
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (21772113, 21302075, 11501454), The Key Research and ­Development Plan of Shandong Province (2017GGX70109), The ­Fundamental Research Fund of Shandong University (2017JC004).
Further Information

Publication History

Received: 14 June 2018

Accepted after revision: 07 July 2018

Publication Date:
02 August 2018 (online)

Abstract

Iodonium ylides can undergo cyclization with a simple tertiary arylamine to afford N-heterocyclic products in a transition-metal-free approach in the absence of an additional initiator/oxidant. The ­inherent reactivity uncovered in this transformation is fundamentally different from known chemical properties of iodonium ylide compounds, thus providing a new opportunity for the further exploration of iodonium ylide-based chemical transformations. This Synpacts article describes the historical background of iodonium ylide chemistry and highlights recent progress disclosed by our work.

1 Introduction

2 The Strategy for New Reaction Discovery

3 Application to Cyclization of Tertiary Arylamines

4 Conclusion and Perspectives

 
  • References

  • 2 Muller P. Acc. Chem. Res. 2004; 37: 243
    • 3a Ochiai M. Kitagawa Y. Yamamoto S. J. Am. Chem. Soc. 1997; 119: 11598
    • 3b Huang X.-C. Liu Y.-L. Liang Y. Pi S.-F. Wang F. Li J.-H. Org. Lett. 2008; 10: 1525
    • 3c Antos A. Elemes Y. Michaelides A. Nyxas JA. Skoulika S. Hadjiarapoglou LP. J. Org. Chem. 2012; 77: 10949
    • 3d Huang H. Yang Y. Zhang X. Zeng W. Liang Y. Tetrahedron Lett. 2013; 54: 6049
  • 4 Chelli S. Troshin K. Mayer P. Lakhdar S. Ofial AR. Mayr H. J. Am. Chem. Soc. 2016; 138: 10304
    • 5a Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 5b Malamidou-Xenikaki E. Spyroudis S. Synlett 2008; 2725
  • 6 Saito M. Kobayashi Y. Tsuzuki S. Takemoto Y. Angew. Chem. Int. Ed. 2017; 56: 7653

    • For an early report on the rearrangement reaction of halonium ylides, see:
    • 7a Kirmse W. Kapps M. Hager RB. Chem. Ber. 1966; 99: 2855
    • 7b For an early report on the rearrangement reaction of iodonium ylides, see: Doyle MP. Tamblyn WH. Bagheri V. J. Org. Chem. 1981; 46: 5094
    • 8a Xu B. Tambar UK. J. Am. Chem. Soc. 2016; 138: 12073
    • 8b Xu B. Tambar UK. Angew. Chem. Int. Ed. 2017; 56: 9868
  • 9 Wang X. Studer A. Acc. Chem. Res. 2017; 50: 1712
    • 10a Hartmann M. Li Y. Mick-Lichtenfeld C. Studer A. Chem. Eur. J. 2016; 22: 3485
    • 10b Telu S. Durmus S. Koser GF. Tetrahedron Lett. 2007; 48: 1863
  • 11 Heinen F. Engelage E. Dreger A. Weiss R. Huber SM. Angew. Chem. Int. Ed. 2018; 57: 3830
  • 12 Zhao Z. Luo Y. Liu S. Zhang L. Feng L. Wang Y. Angew. Chem. Int. Ed. 2018; 57: 3792
  • 14 Zhou B. Chen Z. Yang Y. Ai W. Tang H. Wu Y. Zhu W. Li Y. Angew. Chem. Int. Ed. 2015; 54: 12121