Synthesis 2019; 51(04): 874-884
DOI: 10.1055/s-0037-1610661
paper
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Radical Cyclization of Vinyl Isocyanides with Alkanes: Synthesis of 1-Alkylisoquinolines

Dengqi Xue
a   School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, P. R. of China   Email: limingshao@fudan.edu.cn
,
Yijie Xue
a   School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, P. R. of China   Email: limingshao@fudan.edu.cn
,
Haihua Yu
a   School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, P. R. of China   Email: limingshao@fudan.edu.cn
,
Liming Shao*
a   School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, P. R. of China   Email: limingshao@fudan.edu.cn
b   State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. of China
› Author Affiliations
The authors thank the National Basic Research Program of China (973 Program, 2015CB931804), the National Natural Science Foundation of China (No. 81473076 and 81673292) and the Science and Technology Commission of Shanghai Municipality (No 15431900100) for financial support.
Further Information

Publication History

Received: 13 August 2018

Accepted after revision: 13 September 2018

Publication Date:
10 October 2018 (online)


Abstract

A metal-free radical cyclization reaction of vinyl isocyanides with alkanes is developed, allowing convenient access to a diverse range of potentially valuable 1-alkylisoquinolines. The methodology is simple and efficient, demonstrating excellent functional group tolerance and broad substrate scope. A mechanism involving a radical process is supported by kinetic isotope effect and radical inhibition studies.

Supporting Information

 
  • References

    • 1a Ukita T. Nakamura Y. Kubo A. Yamamoto Y. Moritani Y. Saruta K. Higashijima T. Kotera J. Takagi M. Kikkawa K. Omori K. J. Med. Chem. 2002; 44: 2204
    • 1b Dzierszinski F. Coppin A. Mortuaire M. Dewally E. Slomianny C. Ameisen J.-C. DeBels F. Tomavo S. Antimicrob. Agents Chemother. 2002; 46: 3197
    • 1c Trotter BW. Nanda KK. Kett NR. Regan CP. Lynch JJ. Stump GL. Kiss L. Wang J. Spencer RH. Kane SA. White RB. Zhang R. Anderson KD. Liverton NJ. McIntyre CJ. Beshore DC. Hartman GD. Dinsmore CJ. J. Med. Chem. 2006; 49: 6954
    • 1d Peterson KE. Cinelli MA. Morrell AE. Mehta A. Dexheimer TS. Agama K. Antony S. Pommier Y. Cushman M. J. Med. Chem. 2011; 54: 4937
    • 2a Bischler A. Napieralski B. Ber. Dtsch. Chem. Ges. 1893; 26: 1903
    • 2b Pomeranz C. Monatsh. Chem. 1893; 14: 116
    • 2c Pictet A. Spengler T. Chem. Ber. 1911; 44: 2030
    • 2d Fu R. Xu X. Dang Q. Bai X. J. Org. Chem. 2005; 70: 10810
    • 2e Zein AL. Valluru G. Georghiou PE. Stud. Nat. Prod. Chem. 2012; 38: 53
    • 2f Kotha S. Deodhar D. Khedkar P. Org. Biomol. Chem. 2014; 12: 9054
    • 3a Godula K. Sames D. Science 2006; 312: 67
    • 3b Bergman RG. Nature 2007; 446: 391
    • 3c Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 3d Jin J. MacMillan DW. C. Nature 2015; 525: 87
    • 3e Jin J. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565

      For reviews, see:
    • 4a Leifert D. Daniliuc CG. Studer A. Org. Lett. 2013; 15: 6286
    • 4b Xu Z. Yan C. Liu ZQ. Org. Lett. 2014; 16: 5670
    • 4c Yang XL. Chen F. Zhou NN. Yu W. Han B. Org. Lett. 2014; 16: 6476
    • 4d Jiang H. Cheng Y. Wang R. Zhang Y. Yu S. Chem. Commun. 2014; 50: 6164
    • 4e Zhang B. Studer A. Org. Biomol. Chem. 2014; 12: 9895
    • 4f Wang H. Yu Y. Hong X. Xu B. Chem. Commun. 2014; 50: 13485
    • 4g Gu J. Zhang X. Org. Lett. 2015; 17: 5384
    • 4h Qian P. Du B. Zhou J. Mei H. Han J. Pan Y. RSC Adv. 2015; 5: 64961
    • 4i Xiao P. Rong J. Ni C. Guo J. Li X. Chen D. Hu J. Org. Lett. 2016; 18: 5912
    • 4j Li C. Tu D. Yao R. Yan H. Lu C. Org. Lett. 2016; 18: 4928
    • 4k Xu Z. Hang Z. Liu Z. Org. Lett. 2016; 18: 4470
    • 4l Noël-Duchesneau L. Lagadic E. Morlet-Savary F. Lohier J. Chataigner I. Breugst M. Lalevée J. Gaumont A. Lakhdar S. Org. Lett. 2016; 18: 5900
    • 4m Yao Q. Zhou X. Zhang X. Wang C. Wang P. Li M. Org. Biomol. Chem. 2017; 15: 957
    • 4n Xue D. Chen H. Xu Y. Yu H. Yu L. Li W. Xie Q. Shao L. Org. Biomol. Chem. 2017; 15: 10044
    • 4o Feng S. Li T. Du C. Chen P. Song D. Li J. Xie X. She X. Chem. Commun. 2017; 53: 4585
    • 4p Wang Y. Wang J. Li G. He G. Chen G. Org. Lett. 2017; 19: 1442
    • 4q Xu Y. Chen H. Li W. Xie Q. Yu L. Shao L. Org. Biomol. Chem. 2018; 16: 4996
    • 6a Sha W. Yu J. Jiang Y. Yang H. Cheng J. Chem. Commun. 2014; 50: 9179
    • 6b Li Z. Fan F. Yang J. Liu Z. Org. Lett. 2014; 16: 3396
    • 7a Jones WD. Acc. Chem. Res. 2003; 36: 140
    • 7b Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 7c Meng Y. Guo LN. Wang H. Duan XH. Chem. Commun. 2013; 49: 7540