Synthesis
DOI: 10.1055/s-0037-1610774
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Simple Synthesis of Fluorinated Ene-Ynes via In Situ Generation of Allenes

Joseph A. Jaye
,
Funding was provided by UCLA, the National Science Foundation Major Research Instrumentation Program (NSF MRI; CHE-1048804), the Alfred P. Sloan Foundation (FG-2018-10855 to E.M.S.) and the NSF (GRFP 2018270309 to J.A.J.).


Abstract

Fluorination of small molecules is a key route toward modulating reactivity and bioactivity. The 1,3 ene-yne functionality is an important synthon towards complex products, as well as a common functionality in biologically active molecules. Here, we present a new synthetic route towards fluorinated ene-ynes from simple starting materials. We employ gas chromatography-mass spectrometry analysis to probe the sequential eliminations necessary for this transformation and observe an allene intermediate. The ene-yne products are sufficiently fluorous to enable purification via fluorous extraction. This methodology will allow facile access to functional, fluorous ene-ynes.

Supporting Information



Publication History

Received: 18 March 2021

Accepted after revision: 27 April 2021

Publication Date:
16 June 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 2 Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
  • 3 Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-HS. Angew. Chem. Int. Ed. 2005; 44: 192
  • 4 Meyer D, Jangra H, Walther F, Zipse H, Renaud PA. Nat. Commun. 2018; 9: 4888
  • 5 Ma JA, Cahard D. J. Fluorine Chem. 2007; 128: 975
  • 6 Alonso C, Martínez De Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 7 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
  • 8 Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
  • 9 Dolbier WR. Chem. Rev. 1996; 96: 1557
  • 10 Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536
  • 11 Zhang W, Huang W, Hu J. Angew. Chem. Int. Ed. 2009; 48: 9858
  • 12 Couve-Bonnaire S, Cahard D, Pannecoucke X. Org. Biomol. Chem. 2007; 5: 1151
  • 13 Tellier F, Sauvêtre R, Normant JF. J. Organomet. Chem. 1989; 364: 17
  • 14 Yoshida M, Yoshikawa S, Fukuhara T, Yoneda N, Hara S. Tetrahedron 2001; 57: 7143
  • 15 Camps F, Fabrias G, Guerrero A. Tetrahedron 1986; 42: 3623
  • 16 Welch JT. Tetrahedron 1987; 43: 3123
  • 17 Camps F, Fabrias G, Gasol V, Guerrero A, Hern R. J. Chem. Ecol. 1988; 14: 1331
  • 18 Kumar R, Zajc B. J. Org. Chem. 2012; 77: 8417
  • 19 Jeanne-Julien L, Masson G, Kouoi R, Regazzetti A, Genta-Jouve G, Gandon V, Roulland E. Org. Lett. 2019; 21: 3136
  • 20 Mei YQ, Liu JT. Tetrahedron 2008; 64: 8801
  • 21 Konno T, Kishi M, Ishihara T, Yamada S. Tetrahedron 2014; 70: 2455
  • 22 Konno T, Kishi M, Ishihara T, Yamada S. J. Fluorine Chem. 2013; 156: 144
  • 23 Dai D.-T, Xu J.-L, Chen Z.-Y, Wang Z.-L, Xu Y.-H. Org. Lett. 2021; 23: 1898
  • 24 Yang C, Liu ZL, Dai DT, Li Q, Ma WW, Zhao M, Xu YH. Org. Lett. 2020; 22: 1360
  • 25 Qi S, Gao S, Xie X, Yang J, Zhang J. Org. Lett. 2020; 22: 5229
  • 26 Shen H, Xiao H, Zhu L, Li C. Synlett 2020; 31: 41
  • 27 Huang J, Jia Y, Li X, Duan J, Jiang Z.-X, Yang Z. Org. Lett. 2021; 23: 2314
  • 28 Fujino T, Hinoue T, Usuki Y, Satoh T. Org. Lett. 2016; 18: 5688
  • 29 Jayaraman A, Lee S. Org. Lett. 2019; 21: 7923
  • 30 Eddarir S, Mestdagh H, Rolando C. Tetrahedron Lett. 1991; 32: 69
  • 31 Wang Y, Xu J, Burton DJ. J. Org. Chem. 2006; 71: 7780
  • 32 Zapata AJ, Gu Y, Hammond GB. J. Org. Chem. 2000; 65: 227
  • 33 Jennings MP, Cork EA, Ramachandran PV. J. Org. Chem. 2000; 65: 8763
  • 34 Slodowicz M, Barata-Vallejo S, Vázquez A, Nudelman NS, Postigo A. J. Fluorine Chem. 2012; 135: 137
  • 35 Rong G, Keese R. Tetrahedron Lett. 1990; 31: 5615
  • 36 Xu T, Cheung CW, Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
  • 37 Jaye JA, Sletten EM. ACS Macro Lett. 2020; 9: 410
  • 38 Ji Y.-L, Luo J.-J, Lin J.-H, Xiao J.-C, Gu Y.-C. Org. Lett. 2016; 18: 1000
  • 39 Hung MH. Tetrahedron Lett. 1990; 31: 3703
  • 40 Perscheid M, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2011; 5250
  • 41 Rocaboy C, Hampel F, Gladysz JA. Org. Lett. 2002; 67: 6863
  • 42 Yang L, Adam C, Cockroft SL. J. Am. Chem. Soc. 2015; 137: 10084
  • 43 Kolb H, Finn MG, Sharlpess BK. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 44 Sinha AK, Equbal D. Asian J. Org. Chem. 2019; 8: 32
  • 45 Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 12: 4510
  • 46 Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ. Bioconjugate Chem. 2018; 29: 686
  • 47 Meldal M, Tomøe CW. Chem. Rev. 2008; 108: 2952
  • 48 Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. Organometallics 1996; 15: 1518
  • 49 Habib MH, Mallouk TE. J. Fluorine Chem. 1991; 53: 53
  • 50 Umemoto T, Gotoh Y. Bull. Chem. Soc. Jpn. 1986; 59: 439
  • 51 Kharrat S, Laurent P, Blancou H. J. Org. Chem. 2006; 71: 6742
  • 52 Yamazaki T, Yamamoto T, Ichihara R. J. Org. Chem. 2006; 71: 6251
  • 53 Konno T, Chae J, Kanda M, Nagai G, Tamura K, Ishihara T, Yamanaka H. Tetrahedron 2003; 59: 7571