Synthesis
DOI: 10.1055/s-0037-1610776
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Total Synthesis of Oxepin and Dihydrooxepin Containing Natural Products

Kevin Rafael Sokol
,
T.M. acknowledges the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 714049) and the Center for Molecular Biosciences (CMBI).


Abstract

The construction of oxepin and dihydrooxepin containing natural products represents a challenging task in total synthesis. In the last decades, a variety of synthetic methods have been reported for the installation of these structural motifs. Herein, we provide an overview of synthetic methods and strategies to construct these motifs in the context of natural product synthesis and highlight the key steps of each example.

1 Introduction

2 Oxepin Natural Products

3 Dihydrooxepin Natural Products

3 Brønsted or Lewis acid Catalyzed Cyclization

3.2 Radical Cyclization

3.3 Substitution and Addition Cyclization

3.4 Sigmatropic Rearrangement

3.5 Oxidative Methods

3.6 Transition Metal Catalyzed Cyclization

4 Summary



Publication History

Received: 15 April 2021

Accepted after revision: 25 May 2021

Publication Date:
24 June 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Schleif T, Merini MP, Sander W. Angew. Chem. Int. Ed. 2020; 59: 20318
    • 2a Ji Ram V, Sethi A, Nath M, Pratap R. In The Chemistry of Heterocycles . Ji Ram V, Sethi A, Nath M, Pratap R. Elsevier; Oxford: 2019: 393-425
    • 2b Tochtermann W, Olsson G. Chem. Rev. 1989; 89: 1203
    • 2c Hayes DM, Nelson SD, Garland WA, Kollman PA. J. Am. Chem. Soc. 1980; 102: 1255
    • 3a Barbero H, Díez-Poza C, Barbero A. Mar. Drugs 2017; 15: 361
    • 3b Hoberg JO. Tetrahedron 1998; 54: 12631
    • 4a Siddiqi Z, Wertjes WC, Sarlah D. J. Am. Chem. Soc. 2020; 142: 10125
    • 4b Shim SY, Cho SM, Venkateswarlu A, Ryu DH. Angew. Chem. Int. Ed. 2017; 56: 8663
    • 4c Clark DL, Chou WN, White JB. J. Org. Chem. 1990; 55: 3975
    • 4d Nicolaou KC, Yu R, Shi L, Cai Q, Lu M, Heretsch P. Org. Lett. 2013; 15: 1994
    • 4e Belen’kii LI. In Comprehensive Heterocyclic Chemistry III . Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 45-95
  • 5 Cleve A, Bohlmann F. Tetrahedron Lett. 1989; 30: 1241
  • 6 Doveston RG, Steendam R, Jones S, Taylor RJ. K. Org. Lett. 2012; 14: 1122
  • 7 Wu K, Xie ZP, Cui D.-M, Zhang C. Org. Biomol. Chem. 2018; 16: 832
  • 8 Tojo E, Dominguez D, Castedo L. Phytochemistry 1991; 30: 1005
    • 9a Campello MJ, Castedo L, Dominguez D, de Lera AR, Saá JM, Suau R, Tojo E, Vidal MC. Tetrahedron Lett. 1984; 25: 5933
    • 9b De Lera AR, Suau R, Castedo L. J. Heterocycl. Chem. 1987; 24: 313
  • 10 Garcia A, Castedo L, Domínguez D. Tetrahedron 1995; 51: 8585
  • 11 Moreau A, Couture A, Deniau E, Grandclaudon P. J. Org. Chem. 2004; 69: 4527
  • 12 Lim HS, Choi YL, Heo J.-N. Org. Lett. 2013; 15: 4718
  • 13 Comber MF, Sargent MV. J. Chem. Soc., Perkin Trans. 1 1990; 1371
  • 14 Hsu D.-S, Lin S.-C. J. Org. Chem. 2012; 77: 6139
  • 15 Chen P, Huo L, Li H, Liu L, Yuan Z, Zhang H, Feng S, Xie X, Wang X, She X. Org. Chem. Front. 2018; 5: 1124
  • 16 Soorukram D, Pohmakotr M, Kuhakarn C, Reutrakul V. J. Org. Chem. 2018; 83: 4173
  • 17 Kraus GA, Thite A, Liu F. Tetrahedron Lett. 2009; 50: 5303
  • 18 Narita K, Nakamura K, Abe Y, Katoh T. Eur. J. Org. Chem. 2011; 4985
  • 19 Taweesak P, Thongaram P, Kraikruan P, Thanetchaiyakup A, Chuanopparat N, Hsieh H.-P, Uang B.-J, Ngernmeesri P. J. Org. Chem. 2021; 86: 1955
  • 20 Huang Z, Ji X, Lumb J.-P. Org. Lett. 2021; 23: 236
  • 21 Noguchi I, Maclean DB. Can. J. Chem. 1975; 53: 125
  • 22 Yamaguchi S, Furihata K, Miyazawa M, Yokoyama H, Hirai Y. Tetrahedron Lett. 2000; 41: 4787
  • 23 Yamaguchi S, Tsuchida N, Miyazawa M, Hirai Y. J. Org. Chem. 2005; 70: 7505
  • 24 Zhang W, Baudouin E, Cordier M, Frison G, Nay B. Chem. Eur. J. 2019; 25: 8643
  • 25 Smith RJ, Bower RL, Ferguson SA, Rosengren RJ, Cook GM, Hawkins BC. Eur. J. Org. Chem. 2019; 1571
  • 26 Fujiwara H, Kurogi T, Okaya S, Okano K, Tokuyama H. Angew. Chem. Int. Ed. 2012; 51: 13062
  • 27 Kurogi T, Okaya S, Fujiwara H, Okano K, Tokuyama H. Angew. Chem. Int. Ed. 2016; 55: 283
  • 28 Umeki K, Ueda Y, Sakata J, Tokuyama H. Tetrahedron 2020; 76: 131630
  • 29 Tokuyama H, Yamada K, Fujiwara H, Sakata J, Okano K, Sappan M, Isaka M. J. Org. Chem. 2017; 82: 353
  • 30 Lin J, Zhang W, Jiang N, Niu Z, Bao K, Zhang L, Liu D, Pan C, Yao X. J. Nat. Prod. 2008; 71: 1938
  • 31 Liu KK. C, Sakya SM, O’Donnell CJ, Flick AC, Li J. Bioorg. Med. Chem. 2011; 19: 1136
  • 32 Anugu RR, Mainkar PS, Sridhar B, Chandrasekhar S. Org. Biomol. Chem. 2016; 14: 1332
  • 33 Szcześniak P, Staszewska-Krajewska O, Mlynarski J. Org. Biomol. Chem. 2019; 17: 3225
  • 34 Codelli JA, Puchlopek AL. A, Reisman SE. J. Am. Chem. Soc. 2012; 134: 1930
  • 35 Wang H, Regan CJ, Codelli JA, Romanato P, Puchlopek-Dermenci AL. A, Reisman SE. Org. Lett. 2017; 19: 1698
  • 36 Stefinovic M, Snieckus V. J. Org. Chem. 1998; 63: 2808
  • 37 Roy A, Biswas B, Sen PK, Venkateswaran RV. Tetrahedron Lett. 2007; 48: 6933
  • 38 Manabe Y, Kanematsu M, Yokoe H, Yoshida M, Shishido K. Tetrahedron 2014; 70: 742
  • 39 Yoshida M, Nakatani K, Shishido K. Tetrahedron 2009; 65: 5702
  • 40 Takao K.-i, Watanabe G, Yasui H, Tadano K.-i. Org. Lett. 2002; 4: 2941
    • 41a Takao K.-i, Yasui H, Yamamoto S, Sasaki D, Kawasaki S, Watanabe G, Tadano K.-i. J. Org. Chem. 2004; 69: 8789
    • 41b Yasui H, Hirai K, Yamamoto S, Takao K.-i, Tadano K.-i. J. Antibiot. 2006; 59: 456
    • 42a Malefo MS, Ramadwa TE, Famuyide IM, McGaw LJ, Eloff JN, Sonopo MS, Selepe MA. J. Nat. Prod. 2020; 83: 2508
    • 42b Bruder M, Haseler PL, Muscarella M, Lewis W, Moody CJ. J. Org. Chem. 2010; 75: 353