Synthesis 2021; 53(24): 4709-4722
DOI: 10.1055/s-0037-1610783
paper

An Expedient Approach to Pyrazolo[3,4-b]pyridine-3-carboxamides via Palladium-Catalyzed Aminocarbonylation

a   Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork T12 YN60, Ireland
b   School of Chemistry, Kane Building, University College Cork, Cork T12 YN60, Ireland
,
a   Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork T12 YN60, Ireland
b   School of Chemistry, Kane Building, University College Cork, Cork T12 YN60, Ireland
c   School of Pharmacy, Pharmacy Building, University College Cork, Cork T12 YN60, Ireland
› Author Affiliations
This work was supported by funding from Eli Lilly and Company (4152 R17825).


Abstract

Pyrazolo[3,4-b]pyridine is a privileged scaffold found in many small drug molecules that possess a wide range of pharmacological properties. Efforts to further develop and exploit synthetic methodologies that permit the functionalization of this heterocyclic moiety warrant investigation. To this end, a series of novel 1,3-disubstituted pyrazolo[3,4-b]pyridine-3-carboxamide derivatives have been prepared by introducing the 3-carboxamide moiety using palladium-catalyzed aminocarbonylation methodology and employing CO gas generated ex situ using a two-chamber reactor (COware®). The functional group tolerance of this optimized aminocarbonylation protocol is highlighted through the synthesis of a range of diversely substituted C-3 carbox­amide pyrazolo[3,4-b]pyridines in excellent yields of up to 99%.

Supporting Information



Publication History

Received: 02 June 2021

Accepted after revision: 26 July 2021

Article published online:
26 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zheng W, Wang Z, Jiang X, Zhao Q, Shen J. J. Med. Chem. 2020; 63: 15153
  • 2 Smith LM, Ladziata V, Delucca I, Pinto DJ. P, Orwat MJ, Dilger AK, Pabbisetty KB, Yang W, Shaw SA, Glunz PW, Panda M. WO 2017123860A1, 2017
  • 3 Shi J, Xu G, Zhu W, Ye H, Yang S, Luo Y, Han J, Yang J, Li R, Wei Y, Chen L. Bioorg. Med. Chem. Lett. 2010; 20: 4273
  • 4 Lin R, Connolly PJ, Lu Y, Chiu G, Li S, Yu Y, Huang S, Li X, Emanuel SL, Middleton SA, Gruninger RH, Adams M, Fuentes-Pesquera AR, Greenberger LM. Bioorg. Med. Chem. Lett. 2007; 17: 4297
  • 5 Andoh N, Sanpei O, Toga T, Morris DL, Aston R, Tanaka K, Hino T. World Patent WO2015037747A1, 2016
  • 6 Xing Y, Zuo J, Krogstad P, Jung ME. J. Med. Chem. 2018; 61: 1688
  • 7 Collier PN, Twin HC, Knegtel RM. A, Boyall D, Brenchley G, Davis CJ, Keily S, Mak C, Miller A, Pierard F, Settimo L, Bolton CM, Chiu P, Curnock A, Doyle E, Tanner AJ, Jimenez J. ACS Med. Chem. Lett. 2019; 10: 1134
  • 8 Panarese JD, Engers DW, Wu Y, Bronson JJ, Macor JE, Chun A, Rodriguez AL, Felts AS, Engers JL, Loch MT, Emmitte KA, Castelhano AL, Kates MJ, Nader MA, Jones CK, Blobaum AL, Conn PJ, Niswender CM, Hopkins CR, Lindsley CW. ACS Med. Chem. Lett. 2019; 10: 255
  • 9 Umar T, Shalini S, Raza MK, Gusain S, Kumar J, Seth P, Tiwari M, Hoda N. Eur. J. Med. Chem. 2019; 175: 2
  • 10 Moir M, Lane S, Lai F, Connor M, Hibbs DE, Kassiou M. Eur. J. Med. Chem. 2019; 180: 291
  • 11 Aronov A, Lauffer DJ, Li P, Tomlinson RC. WO2003078423A1, 2005
  • 12 Lynch BM, Khan MA, Teo HC, Pedrotti F. Can. J. Chem. 1988; 66: 420
  • 13 Mittendorf J, Weigand S, Alonso-Alija C, Bischoff E, Feurer A, Gerisch M, Kern A, Knorr A, Lang D, Muenter K, Radtke M, Schirok H, Schlemmer K, Stahl E, Straub A, Wunder F, Stasch J. ChemMedChem 2009; 4: 853
    • 14a Buchler IP, Hayes MJ, Hegde SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK. WO2009106980, 2009
    • 14b Buchler IP, Hayes MJ, Hegde SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK. WO2009106982, 2009
  • 15 Buchstaller H, Wilkinson K, Burek K, Nisar Y. Synthesis 2011; 3089
  • 16 Blaquiere N, Burch J, Castanedo G, Feng JA, Hu B, Staben S, Wu G, Yuen P. WO 2015025025A1, 2015
  • 17 Blake JF, Boyd SA, Cohen F, De Messe J, Fong KC, Gaudino JJ, Kaplan T, Marlow AL, Seo J, Thomas AA, Tian H, Young WB. WO 2007103308, 2007
  • 18 Kannaboina P, Raina G, Kumar KA, Das P. Chem. Commun. 2017; 53: 9446
  • 19 Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 20 Friis SD, Lindhardt AT, Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
  • 21 Neumann KT, Lindhardt AT, Bang-Andersen B, Skrydstrup T. Org. Lett. 2015; 17: 2094
  • 22 Bhilare S, Shah J, Gaikwad V, Gupta G, Sanghvi YS, Bhanage BM, Kapdi AR. Synthesis 2019; 51: 4239
  • 23 Gockel SN, Hull KL. Org. Lett. 2015; 17: 3236
  • 24 Wan Y, Alterman M, Larhed M, Hallberg A. J. Org. Chem. 2002; 67: 6232
  • 25 Kaiser NK, Hallberg A, Larhed M. J. Comb. Chem. 2002; 4: 109
  • 26 Mamone M, Aziz J, Le Bescont J, Piguel S. Synthesis 2018; 50: 1521
  • 27 Babjak M, Caletková O, Ďurišová D, Gracza T. Synlett 2014; 25: 2579
  • 28 Friis SD, Taaning RH, Lindhardt AT, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 18114
  • 29 Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
  • 30 Flinker M, Lopez S, Nielsen DU, Daasbjerg K, Jensen F, Skrydstrup T. Synlett 2017; 28: 2439
  • 31 Yin Z, Wu X. Org. Process Res. Dev. 2017; 21: 1869
  • 32 Markovič M, Lopatka P, Koóš P, Gracza T. Org. Lett. 2015; 17: 5618
  • 33 Veryser C, Van Mileghem S, Egle B, Gilles P, De Borggraeve WM. React. Chem. Eng. 2016; 1: 142
  • 34 Peng J, Geng H, Wu X. Chem 2019; 5: 526
  • 35 Barnard CF. J. Organometallics 2008; 27: 5402
  • 36 Fang W, Zhu H, Deng Q, Liu S, Liu X, Shen Y, Tu T. Synthesis 2014; 46: 1689
  • 37 Jian X, Yang F, Jiang C, You W, Zhao P. Bioorg. Med. Chem. Lett. 2020; 30: 127025
  • 38 Dierkes P, Van Leeuwen PW. N. M. J. Chem. Soc., Dalton Trans. 1999; 1519
  • 39 Martinelli JR, Watson DA, Freckmann DM. M, Barder TE, Buchwald SL. J. Org. Chem. 2008; 73: 7102
  • 40 Van der Veen LA, Keeven PH, Schoemaker GC, Reek JN. H, Kamer PC. J, Van Leeuwen PW. N. M, Lutz M, Spek AL. Organometallics 2000; 19: 872
  • 41 Jover J, Cirera J. Dalton Trans. 2019; 15036
  • 42 Doherty S, Knight JG, Ward NA. B, Bittner DM, Wills C, McFarlane W, Clegg W, Harrington RW. Organometallics 2013; 32: 1773
  • 43 Roy S, Roy S, Gribble GW. Tetrahedron 2012; 68: 9867
  • 44 Beller M, Wu X. A Discussion Between Carbonylation, Noncarbonylation and Decarbonylation. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds. Springer-Verlag; Berlin: 2013: 215-221
  • 45 Langueux-Tremblay P, Fabrikant A, Arndtsen BA. ACS Catal. 2018; 8: 5350
  • 46 Nielsen DU, Taaning RH, Lindhardt AT, Gøgsig TM, Skrydstrup T. Org. Lett. 2011; 13: 4454
  • 47 Ismael A, Gevorgyan A, Skrydstrup T, Bayer A. Org. Process Res. Dev. 2020; 24: 2665
  • 48 Wannberg J, Larhed M. J. Org. Chem. 2003; 68: 5750
  • 49 Åkerbladh L, Schembri LS, Larhed M, Odell LR. J. Org. Chem. 2017; 82: 12520
  • 50 Boyarskii VP. Russ. J. Gen. Chem. 2008; 78: 1511
  • 51 Gabriele B, Salerno G, Veltri L, Costa M. J. Organomet. Chem. 2001; 622: 84
  • 52 Dong Y, Sun S, Yang F, Zhu Y, Zhu W, Qiao H, Wu Y, Wu Y. Org. Chem. Front. 2016; 3: 720
  • 53 Hughes NL, Brown CL, Irwin AA, Cao Q, Muldoon MJ. ChemSusChem 2017; 10: 675
  • 54 Ran L, Ren Z, Wang Y, Guan Z. Chem. Asian J. 2014; 9: 577
  • 55 Das D, Bhanage BM. Adv. Synth. Catal. 2020; 362: 3022