Synthesis 2019; 51(11): 2278-2286
DOI: 10.1055/s-0037-1610877
feature
© Georg Thieme Verlag Stuttgart · New York

Directed ortho-Metalation of Arenesulfonyl Fluorides and Aryl Fluorosulfates

Alicja Talko
,
Damian Antoniak
,
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland   Email: barbasiewicz@chem.uw.edu.pl
› Author Affiliations
This work was financed by the SONATA BIS program of the Narodowe Centrum Nauki (National Science Centre, Poland, NCN; Grant No. DEC-2013/10/E/ST5/00030).
Further Information

Publication History

Received: 24 February 2019

Accepted after revision: 12 March 2019

Publication Date:
11 April 2019 (eFirst)

Abstract

Studies on directed ortho-metalation (DoM) of arenesulfonyl fluorides (ArSO2F) with in situ electrophile trapping are presented. Under optimized conditions (LDA, THF, –78 °C), a series of model substrates was mono- and difunctionalized with trimethylsilyl chloride in good yields. The synthetic results reveal powerful directing character of the SO2F group, being ahead of bromine and methoxy substituents. Under the same metalation conditions, aryl fluorosulfates (ArOSO2F) display fragmentation to arynes and migration of the SO2F group to the ortho position (anionic thia-Fries rearrangement).

Supporting Information

 
  • References

  • 1 Chinthakindi PK, Arvidsson PI. Eur. J. Org. Chem. 2018; 3648
  • 2 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
  • 3 Fattah TA, Saeed A, Albericio F. J. Fluorine Chem. 2018; 213: 87
  • 4 Narayanan A, Jones LH. Chem. Sci. 2015; 6: 2650
  • 5 Dondoni A, Marra A. Org. Biomol. Chem. 2017; 15: 1549
  • 6 Yatvin J, Brooks K, Locklin J. Chem. Eur. J. 2016; 22: 16348
  • 7 Mukherjee P, Woroch CP, Cleary L, Rusznak M, Franzese RW, Reese MR, Tucker JW, Humphrey JM, Etuk SM, Kwan SC, am Ende CW, Ball ND. Org. Lett. 2018; 20: 3943
  • 8 Zheng Q, Dong J, Sharpless KB. J. Org. Chem. 2016; 81: 11360
  • 9 Talko A, Barbasiewicz M. ACS Sustainable Chem. Eng. 2018; 6: 6693
  • 10 Bogolubsky AV, Moroz YS, Mykhailiuk PK, Pipko SE, Konovets AI, Sadkova IV, Tolmachev A. ACS Comb. Sci. 2014; 16: 192
  • 11 Tribby AL, Rodríguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2294
  • 12 Kagabu S, Hara K, Takahashi J. J. Chem. Soc., Chem. Commun. 1991; 408
  • 13 Kagabu S, Shimizu C, Takahashi J, Hara K, Koketsu M, Ishida M. Bull. Soc. Chim. Fr. 1992; 129: 435
  • 14 Dubbaka SR, Vogel P. Tetrahedron 2005; 61: 1523
  • 15 Górski B, Talko A, Basak T, Barbasiewicz M. Org. Lett. 2017; 19: 1756
  • 16 Górski B, Basiak D, Talko A, Basak T, Mazurek T, Barbasiewicz M. Eur. J. Org. Chem. 2018; 1774
  • 17 For a review, see: Snieckus V. Chem. Rev. 1990; 90: 879
  • 18 For a recent report, see: Miah MA. J, Sibi MP, Chattopadhyay S, Familoni OB, Snieckus V. Eur. J. Org. Chem. 2018; 440
  • 19 Schneider C, Broda E, Snieckus V. Org. Lett. 2011; 13: 3588
  • 20 Fleming I, Mah T. J. Chem. Soc., Perkin Trans. 1 1976; 1577
  • 21 Stoyanovich FM, Gol’dfarb YaL, Marakatkina MA, Karpenko RG. Russ. Chem. Bull. 1980; 29: 129 ; DOI: 10.1007/BF00951894
  • 22 Bonfiglio JN. J. Org. Chem. 1986; 51: 2833
  • 23 Spangler LA. Tetrahedron Lett. 1996; 37: 3639
  • 24 Iwao M, Iihama T, Mahalanabis KK, Perrier H, Snieckus V. J. Org. Chem. 1989; 54: 24
  • 25 Sumii Y, Taniguchi M, Xu X.-H, Tokunaga E, Shibata N. Tetrahedron 2018; 74: 5635
  • 26 Brikci-Nigassa NM, Bentabed-Ababsa G, Erb W, Mongin F. Synthesis 2018; 50: 3615
  • 27 Caron S, Hawkins JM. J. Org. Chem. 1998; 63: 2054
  • 28 Kristensen J, Lysén M, Vedsø P, Begtrup M. Org. Lett. 2001; 3: 1435
  • 29 Luliński S, Serwatowski J. J. Org. Chem. 2003; 68: 9384
  • 30 Under optimized reaction conditions (LDA, TMSCl, –78 °C, THF) benzenesulfonyl chloride failed to give the expected silylation products (no 1H NMR resonances at δ = +0.3 to +0.5). Instead, we observed that the PhSO2Cl slowly converts into ill-defined products, with poor mass recovery after workup and chromatography.
  • 31 For an attempt of metalation of benzenesulfonyl fluoride (1a) with LiTMP giving a polymeric product, see: Eisch JJ, Qian Y, Chiu CS. J. Org. Chem. 1996; 61: 1392
  • 32 For a functionalization of 1-substituted 2,6-bis(silylated)arenes by metalation, see: Bellan AB, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 1838
  • 33 For an application of sterically hindered 2,4,6-tri(isopropyl)benzenesulfonamides as artificial acylases, see: Kosugi Y, Akakura M, Ishihara K. Tetrahedron 2007; 63: 6191
  • 34 Alo BI, Familoni OB, Marsais F, Queguiner G. J. Chem. Soc., Perkin Trans. 1 1990; 1611
  • 35 MacNeil SL, Familoni OB, Snieckus V. J. Org. Chem. 2001; 66: 3662
  • 36 An inseparable mixture of 2-bromo-3,6-bis(trimethylsilyl)benzenesulfonyl fluoride and most likely 5-bromo-2-(trimethylsilyl)benzenesulfonyl fluoride (2:3) was formed in ca. 76% yield. The latter product could be formed by the bromine atom shift of the C-3 metalated monosilylated product 2e, with decrease of basicity and release of strain as driving forces. For a ‘halogen dance’ process running on a similar system, see: Mongin F, Marzi E, Schlosser M. Eur. J. Org. Chem. 2001; 2771
  • 37 Compare: Frye LL, Sullivan EL, Cusack KP, Funaro JM. J. Org. Chem. 1992; 57: 697
  • 38 For Ir-catalyzed 2-borylation of methyl benzoates, see: Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
  • 39 Attempt at in situ methylation of 1a with MeI (2.4 equiv) in the presence of LDA (1.2 equiv) in THF under argon (30 min at –78 °C, then 30 min at r.t.) gave a hardly separable mixture of 1a and 2-methylbenzenesulfonyl fluoride: 1H NMR (400 MHz, CDCl3): δ = 8.04–8.00 (m, 1 H), 7.61 (td, J = 7.6, 1.4 Hz, 1 H), 7.43–7.36 (m, 2 H), 2.67 (s, 3 H). 19F NMR (376 MHz, CDCl3): δ = 59.77, 59.72 (resonance of 34S molecule, ca. 5%). The mixture (58:42, according to GC) was partially separated by chromatography to few fractions of different component ratio in total yield of ca. 50%. More polar fractions after chromatography contained numerous ill-defined by-products.
  • 40 Li X, Hewgley JB, Mulrooney CA, Yang J, Kozlowski MC. J. Org. Chem. 2003; 68: 5500
  • 41 Gaillard S, Papamicaël C, Dupas G, Marsais F, Leacher V. Tetrahedron 2005; 61: 8138
  • 42 Compare: Mao S, Gao Y.-R, Zhu X.-Q, Guo D.-D, Wang Y.-Q. Org. Lett. 2015; 17: 1692
  • 43 For a review of related process, see: Chelucci G. Chem. Rev. 2012; 112: 1344
  • 44 Revathi L, Ravindar L, Leng J, Rakesh KP, Qin H.-L. Asian J. Org. Chem. 2018; 7: 662
  • 45 For applications of aryl fluorosulfates, see: Martín-Gago P, Olsen CA. Angew. Chem. Int. Ed. 2019; 58: 957
  • 46 See, for example: Zhang E, Tang J, Li S, Wu P, Moses JE, Sharpless KB. Chem. Eur. J. 2016; 22: 5692 ; and references cited therein
  • 47 Similar fragmentation pathway was reported for o-(trimethylsilyl)aryl fluorosulfates, which undergo a fluoride-induced decomposition to arynes: Chen Q, Yu H, Xu Z, Lin L, Jiang X, Wang R. J. Org. Chem. 2015; 80: 6890
  • 48 Wickham PP, Hazen KH, Guo H, Jones G, Reuter KH, Scott WJ. J. Org. Chem. 1991; 56: 2045
  • 49 Charmant JP. H, Dyke AM, Lloyd-Jones GC. Chem. Commun. 2003; 380
  • 50 Dyke AM, Gill DM, Harvey JN, Hester AJ, Lloyd-Jones GC, Muñoz MP, Shepperson IR. Angew. Chem. Int. Ed. 2008; 47: 5067
  • 51 For a remote anionic thia-Fries rearrangement, see: Xu X.-H, Taniguchi M, Azuma A, Liu GK, Tokunaga E, Shibata N. Org. Lett. 2013; 15: 686
  • 52 For a fluoride-induced anionic thia-Fries rearrangement, see: Hall C, Henderson JL, Ernouf G, Greaney MF. Chem. Commun. 2013; 49: 7602
  • 53 Veryser C, Demaerel J, Bieliunas V, Gilles P, De Borggraeve WM. Org. Lett. 2017; 19: 5244
  • 54 Culbertson BM, Dietz S. J. Chem. Soc. C 1968; 992
  • 55 Tang L, Yang Y, Wen L, Yang X, Wang Z. Green Chem. 2016; 18: 1224
  • 56 Chinthakindi PK, Govender KB, Kumar AS, Kruger HG, Govender T, Naicker T, Arvidsson PI. Org. Lett. 2017; 19: 480
  • 57 Hsua Y.-L, Yang C.-C, Chou T.-C, Tai C.-H, Chen L.-Y, Fu S.-L, Lin J.-J, Lo L.-C. Tetrahedron 2016; 72: 58
  • 58 Dong J, Sharpless KB, Kelly JW, Chen W. (The Scripps Research Institute) Patent US10117840, 2018
  • 59 CCDC 1894350 (5) and CCDC 1894351 (8) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 60 Lee P.-Y, Liang P, Yu W.-Y. Org. Lett. 2017; 19: 2082
  • 61 Cho S, Wang Q. Tetrahedron 2018; 74: 3325
  • 62 Lei Z, Liu H, Cai M. J. Organomet. Chem. 2017; 852: 54