Synthesis 2019; 51(02): 522-529
DOI: 10.1055/s-0037-1610907
paper
© Georg Thieme Verlag Stuttgart · New York

Visible-Light Photoredox-Catalyzed Cascade Reaction for the Synthesis of Pyrrolo[2,1-a]isoquinoline-Substituted Phosphonates

Lingna Wang
,
Tiancong Ma
,
Mingming Qiao
,
Qiangxian Wu
,
Deqing Shi*
Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China   Email: chshidq@mail.ccnu.edu.cn
,
Wenjing Xiao
› Author Affiliations
We are grateful to the NSFC (No. 21342004 and 51573066), Program of Introducing Talents of Discipline to Universities of China (111 Program, B17019) and the Syngenta Ph.D. (postgraduate) program for support of this research.
Further Information

Publication History

Received: 06 August 2018

Accepted after revision: 21 August 2018

Publication Date:
17 September 2018 (online)


Abstract

A visible-light photoredox-catalyzed oxidation/[3+2] cycloaddition/oxidative aromatization cascade reaction of [(3,4-dihydroisoquinolin-2(1H)-yl)methyl]phosphonates and activated olefins or alkynes for the efficient synthesis of potentially biological active pyrrolo[2,1-a]isoquinoline-substituted phosphonates was developed. This transformation features mild reaction conditions (i.e., visible light irradiation, room temperature), molecular oxygen (O2) as a green oxidant, simple ‘one-pot’ operation.

Supporting Information

 
  • References

    • 1a Westheimer FH. Science (Washington, D. C.) 1987; 235: 1173
    • 1b Demmer CS. Krogsgaard-Larsen N. Bunch L. Chem. Rev. 2011; 111: 7981
    • 1c Corbridge DE. C. Phosphorus: Chemistry, Biochemistry and Technology . CRC Press; Boca Raton: 2013. 6th ed.
    • 1d Kirumakki S. Huang J. Subbiah A. Yao J. Rowland A. Smith B. Mukherjee A. Samarajeewa S. Clearfield A. J. Mater. Chem. 2009; 19: 2593
    • 1e Spampinato V. Tuccitto N. Quici S. Calabrese V. Marletta G. Torrisi A. Licciardello A. Langmuir 2010; 26: 8400
    • 2a Seto H. Kuzuyama T. Nat. Prod. Rep. 1999; 16: 589
    • 2b Yoshino K. Kohno T. Morita T. Tsukamoto G. J. Med. Chem. 1989; 32: 1528
    • 2c Han L.-B. Ono Y. Xu Q. Shimada S. Bull. Chem. Soc. Jpn. 2010; 83: 1086
    • 2d Tan S.-J. Lim J.-L. Low Y.-Y. Sim K.-S. Lim S.-H. Kam T.-S. J. Nat. Prod. 2014; 77: 2068
    • 3a Kamer PC. J. Leeuwen PW. N. M. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis. Wiley; Chichester: 2012
    • 3b McManus HA. Guiry PJ. Chem. Rev. 2004; 104: 4151
    • 3c Birkholz MN. Freixa Z. van Leeuwen PW. Chem. Soc. Rev. 2009; 38: 1099
    • 3d Tang W.-J. Zhang X.-M. Chem. Rev. 2003; 103: 3029
    • 3e Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 3f Shi W. Luo Y.-D. Luo X.-C. Chao L. Zhang H. Wang J. Lei A.-W. J. Am. Chem. Soc. 2008; 130: 14713
    • 4a Prier CK. Rankic DA. MacMillan DW. Chem. Rev. 2013; 113: 5322
    • 4b Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 4c Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 4d Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 4e Gentry EC. Knowles RR. Acc. Chem. Res. 2016; 49: 1546
    • 4f Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 4g Xie J. Jin H.-M. Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
    • 4h Xu P. Li W.-P. Xie J. Zhu C.-J. Acc. Chem. Res. 2018; 51: 484
    • 5a Luo K. Yang W.-C. Wu L. Asian J. Org. Chem. 2017; 6: 350
    • 5b Rueping M. Zhu S.-Q. Koenigs RM. Chem. Commun. 2011; 47: 8679
    • 5c Hari DP. König B. Org. Lett. 2011; 13: 3852
    • 5d Xue Q.-C. Xie J. Jin H.-M. Cheng Y.-X. Zhu C.-J. Org. Biomol. Chem. 2013; 11: 1606
    • 5e Rueping M. Vila C. Bootwicha T. ACS Catal. 2013; 3: 1676
    • 5f Yoo W.-J. Kobayashi S. Green Chem. 2014; 16: 2438
    • 5g Franz JF. Kraus WB. Zeitler K. Chem. Commun. 2015; 51: 8280
    • 5h Xuan J. Zeng T.-T. Chen J.-R. Lu L.-Q. Xiao W.-J. Chem. Eur. J. 2015; 21: 4962
    • 5i Bu M.-J. Lu G.-P. Cai C. Catal. Sci. Technol. 2016; 6: 413
    • 5j Luo K. Chen Y.-Z. Yang W.-C. Zhu J. Wu L. Org. Lett. 2016; 18: 452
    • 5k He Y. Wu H.-M. Toste FD. Chem. Sci. 2015; 6: 1194
    • 5l Shaikh RS. Düsel SJ. S. König B. ACS Catal. 2016; 6: 8410
    • 5m Wang X.-Z. Meng Q.-Y. Zhong J.-J. Gao X.-W. Lei T. Zhao L.-M. Li Z.-J. Chen B. Tung C.-H. Wu L.-Z. Chem. Commun. 2015; 51: 11256
    • 5n Shaikh RS. Ghosh I. König B. Chem. Eur. J. 2017; 23: 12120
    • 6a Quint V. Morlet-Savary F. Lohier JF. Lalevee J. Gaumont AC. Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
    • 6b Li C.-X. Tu D.-S. Yao R. Yan H. Lu C.-S. Org. Lett. 2016; 18: 4928
    • 6c Wang C.-H. Li Y.-D. Yang Y.-D. Org. Lett. 2018; 20: 2382
    • 7a Bailly C. Curr. Med. Chem. Anti-Cancer Agents 2004; 4: 363
    • 7b Fan H. Peng J. Hamann MT. Hu JF. Chem. Rev. 2008; 108: 264
    • 7c Pla D. Albericio F. Alvarez M. Anti-Cancer Agents Med. Chem. 2008; 8: 746
    • 7d Marco E. Laine W. Tardy C. Lansiaux A. Iwao M. Ishibashi F. Bailly C. Gago F. J. Med. Chem. 2005; 48: 3796
    • 7e Reddy MV. R. Rao MR. Rhodes D. Hansen MS. T. Rubins K. Bushman FD. Venkateswarlu Y. Faulkner D. J. Med. Chem. 1999; 42: 1901
    • 7f Reddy SM. Srinivasulu M. Satyanarayana N. Kondapi AK. Venkateswarlu Y. Tetrahedron 2005; 61: 9242
    • 7g Quesada AR. Gravalos MD. G. Puentes JL. F. Br. J. Cancer 1996; 74: 677
    • 8a Yu C. Zhang Y. Zhang S. Li H. Wang W. Chem. Commun. 2011; 47: 1036
    • 8b Zou Y.-Q. Lu L.-Q. Fu L. Chang N.-J. Rong J. Chen J.-R. Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
    • 9a Guo H.-M. Zhou Q.-Q. Jiang X. Shi D.-Q. Xiao W.-J. Adv. Synth. Catal. 2017; 359: 4141
    • 9b Che J.-Y. Xu X.-Y. Tang Z.-L. Gu Y.-C. Shi D.-Q. Bioorg. Med. Chem. Lett. 2016; 26: 1310
    • 9c Wang Z.-Q. Yu Z.-H. Wang Y. Shi D.-Q. Synthesis 2012; 44: 1559
  • 10 See Supporting Information for details of condition optimization, the procedure for the sunlight-driven experiment and gram-scale reaction.
  • 11 CCDC 1818810 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 12 Fujiya A. Tanaka M. Yamaguchi E. Tada N. Itoh A. J. Org. Chem. 2016; 81: 7262
    • 13a Condie AG. González-Gómez JC. Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 13b Zhao G. Yang C. Guo L. Sun H. Chen C. Xia W. Chem. Commun. 2012; 48: 2337
    • 14a Zakharov SV. Nuriazdanova GKh. Garifzyanov AR. Galkin VI. Cherkasov RA. Russ. J. Gen. Chem. 2004; 74: 873
    • 14b Hu G.-B. Chen W.-Z. Ma D.-M. Zhang Y. Xu P.-X. Gao Y.-X. Zhao Y.-F. J. Org. Chem. 2016; 81: 1704