Synthesis 2019; 51(02): 552-556
DOI: 10.1055/s-0037-1610909
paper
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of the Natural Pyridocoumarins Goniothaline A and B

Sungwan Ahn
,
Jeong A Yoon
,
Young Taek Han*
College of Pharmacy, Dankook University, Dandae-ro 119, Cheonan 31116, Republic of Korea   Email: [email protected]
› Author Affiliations
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1C1B1001826).
Further Information

Publication History

Received: 30 July 2018

Accepted after revision: 23 August 2018

Publication Date:
17 September 2018 (online)


Abstract

In this paper, we report the first total synthesis of goniothaline A and B, which are rare natural pyridocoumarins isolated from Goniothalamus australis. The key feature of the synthesis of goniothaline A is high-yielding silver-catalyzed cycloisomerization to afford the pyridine moiety. In addition, goniothaline B, a natural 8-hydroxyquinoline derivative, is readily synthesized by the regioselective demethylation of goniothaline A.

Supporting Information

 
  • References

    • 1a Grover J. Jachak SM. RSC Adv. 2015; 5: 38892
    • 1b Jameel E. Umar T. Kumar J. Hoda N. Chem. Biol. Drug Des. 2016; 87: 21
    • 1c Khoobi M. Foroumadi A. Emami S. Safavi M. Dehahan G. Alizadeh BH. Ramazani A. Ardestani SK. Shafiee A. Chem. Biol. Drug Des. 2011; 78: 580
    • 1d Medina FG. Marrero JG. Macias-Alonso M. Gonzalez MC. Cordova-Guerrero I. Teissier Garcia AG. Osequeda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
    • 2a Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 2b Nicolaou KC. Pfefferkorn JA. Roecker AJ. Cao G.-Q. Barluenga S. Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
    • 2c Symeonidis TS. Litinas KE. Tetrahedron Lett. 2013; 54: 6517
    • 2d Belal M. Das DK. Khan AT. Synthesis 2015; 47: 1109
  • 3 Levrier C. Balastrier M. Beattle KD. Carroll AR. Martin F. Choomuenwai V. Davis RA. Phytochemistry 2013; 86: 121
    • 4a Oliveri V. Vecchio G. Eur. J. Med. Chem. 2016; 120: 252
    • 4b Song Y. Xu H. Chen W. Zhan P. Liu X. Med. Chem. Commun. 2015; 6: 61
    • 5a Pettit GR. Hoffmann H. Herald DL. McNulty J. Murphy A. Higgs KC. Hamel E. Lewin NE. Pearce LV. Blumberg PM. Pettit RK. Knight JC. J. Org. Chem. 2004; 69: 2251
    • 5b Ahn S. Han YT. Tetrahedron Lett. 2017; 58: 4779
    • 6a Khusnutdinov RI. Bayguzina AR. Dzhemilev UM. J. Organomet. Chem. 2014; 768: 75
    • 6b Prajapati SM. Patel KD. Vekariya RH. Panchal SN. Patel HD. RSC Adv. 2014; 4: 24463
  • 7 Capdevielle P. Maumy M. Tetrahedron 2001; 57: 379
  • 8 Niimura K. Katohno M. Sagawa K. WO 2002053552, 2002
  • 9 Liu W. Hua J. Zhou J. Zhang H. Zhu H. Cheng Y. Gust R. Bioorg. Med. Chem. Lett. 2012; 22: 5008
  • 10 Yang L. Hu Z. Luo J. Tang C. Zhang S. Ning W. Dong C. Huang J. Liu X. Zhou HB. Bioorg. Med. Chem. 2017; 25: 3531
    • 11a Baghernejad B. Heravi MM. Oskooie HA. Beheshtiha YS. Gazi Univ. J. Sci. 2009; 22: 169
    • 11b Sudarma IM. Wazni N. Wildawaty N. Yuanita E. Suana IW. Asian J. Chem. 2014; 26: 173
    • 11c Heredia DA. Larghi EL. Kaufman TS. Eur. J. Org. Chem. 2016; 1397
    • 11d Sathunuru R. Biehl E. ARKIVOC 2004; (xiv): 89 ; http://www.arkat-usa.org/home
    • 11e Tyagi YK. Kumar A. Raj HG. Vohra P. Gupta G. Kumari R. Kumar P. Gupta RK. Eur. J. Med. Chem. 2005; 40: 413
    • 12a Yamashkin SA. Oreshkina EA. Chem. Heterocycl. Compd. 2006; 42: 701
    • 12b Chauhan SM. S. Gupta M. Nizar PN. H. J. Heterocycl. Chem. 1991; 28: 1161
    • 12c Chackal S. Dudouit F. Houssin R. Henarch J.-P. Heterocycles 2003; 60: 615
  • 13 Majumdar KC. Nandi RK. Ganai S. Taher A. Synlett 2011; 116