Synthesis 2019; 51(02): 500-507
DOI: 10.1055/s-0037-1610910
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Isoquinoline-Fused Quinazolinones through Ag(I)-Catalyzed Cascade Annulation of 2-Aminobenzamides and 2-Alkynylbenzaldehydes

Amol D. Sonawane
a   Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
,
Yunnus B. Shaikh
a   Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
,
Dinesh R. Garud
b   Department of Chemistry, Sir Parashurambhau College, Tilak road, Pune 411030, India   Email: koketsu@gifu-u.ac.jp
,
Mamoru Koketsu*
a   Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
› Author Affiliations
This study was supported by JSPS KAKENHI Grant Number 17550099 to M.K.
Further Information

Publication History

Received: 31 July 2018

Accepted after revision: 23 August 2018

Publication Date:
21 September 2018 (online)


Abstract

A new route for the expedient synthesis of a specific regioisomer of isoquinoline-fused quinazolinones is reported. Silver(I)-catalyzed cascade cyclization of 2-aminobenzamides and 2-alkynylbenzaldehydes followed by in situ oxidation gives 12-butyl- or 12-aryl-6H-isoquinolino[2,1-a]quinazolin-6-ones in 69–91% yields. The structure of the isoquinoline-fused quinazolinone was confirmed by X-ray crystallography analysis.

Supporting Information

 
  • References

  • 1 Affiliated to Savitribai Phule Pune University, Pune 411007 India (formerly University of Pune).

    • For reviews, see:
    • 2a Gladysz JA. Chem. Rev. 2011; 111: 1167
    • 2b Transition Metals for Organic Synthesis . Beller M. Bolm C. Wiley-VCH; New York: 2004
    • 2c Metal-Catalyzed Cross-Coupling Reactions . de Meijere A. Diederich F. Wiley-VCH; New York: 2004
    • 2d Organometallics in Process Chemistry . Larsen RD. Springer; Berlin: 2004
    • 2e Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2f Gutekunst WR. Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 2g Stokes BJ. Driver TG. Eur. J. Org. Chem. 2011; 4071
    • 2h Mei T.-S. Kou L. Ma S. Engle KM. Yu JQ. Synthesis 2012; 44: 1778
    • 2i Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2j Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 2k Yoshikai N. Wei Y. Asian J. Org. Chem. 2013; 2: 466
    • 2l Ardkhean RD. Caputo FJ. Morrow SM. Shi H. Xiong Y. Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
    • 2m Deiters A. Martin SF. Chem. Rev. 2004; 104: 2199
    • 2n Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 2o Nakamura I. Yamamoto Y. Chem. Rev. 2004; 104: 2127

      For perspectives on atom-, step-, and redox-economy, respectively, see
    • 3a Trost BM. Science (Washington, D. C.) 1991; 254: 1471
    • 3b Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
    • 3c Newhouse T. Baran PS. Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 3d Burns NZ. Baran PS. Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
    • 5a Gorin DJ. Toste FD. Nature (London) 2007; 446: 395
    • 5b Fürstner A. Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 5c Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 5d Fang G. Cong X. Zanoni G. Liu Q. Bi X. Adv. Synth. Catal. 2017; 359: 1422
    • 5e Liu J. Fang Z. Zhang Q. Liu Q. Bi X. Angew. Chem. Int. Ed. 2013; 52: 6953
    • 5f Liu J. Liu Z. Liao P. Bi X. Org. Lett. 2014; 16: 6204
    • 5g Meng X. Liao P. Liu J. Bi X. Chem. Commun. 2014; 50: 11837
    • 5h Liu J. Liu Z. Wu N. Liao P. Bi X. Chem. Eur. J. 2014; 20: 2154
    • 5i Liu Z. Liu J. Zhang L. Liao P. Song J. Bi X. Angew. Chem. Int. Ed. 2014; 53: 5305
    • 5j Liu Z. Liao P. Bi X. Org. Lett. 2014; 16: 3668
    • 5k Ning Y. Wu N. Yu H. Liao P. Li X. Bi X. Org. Lett. 2015; 17: 2198
    • 5l Huters AD. Quasdorf KW. Styduhar ED. Garg NK. J. Am. Chem. Soc. 2011; 133: 15797
    • 5m Quasdorf KW. Huters AD. Lodewyk MW. Tantillo DJ. Garg NK. J. Am. Chem. Soc. 2012; 134: 1396
    • 6a Majumdar KC. Chattopadhyay SK. Heterocycles in Natural Product Synthesis . Wiley-VCH; Weinheim: 2011
    • 6b Comprehensive Heterocyclic Chemistry III . Katritzky AR. Ramsden CA. Scriven EV. F. Taylor RJ. K. Elsevier; Amsterdam: 2008
    • 6c Lynch MA. Duval O. Sukhanova A. Devy J. MacKay SP. Waigh RD. Nabiev I. Bioorg. Med. Chem. Lett. 2001; 11: 2643
    • 6d Jones G. Abarca B. Adv. Heterocycl. Chem. 2010; 100: 195
    • 6e Chittchang M. Batsomboon P. Ruchirawat S. Ploypradith P. ChemMedChem 2009; 4: 457
    • 6f Padmavathi V. Radha Lakshmi T. Mahesh K. Padmaja A. Chem. Pharm. Bull. 2009; 57: 1200
    • 6g Eamvijarn A. Gomes NM. Dethoup T. Buaruang J. Manoch L. Silva A. Pedro M. Marini I. Roussis V. Kijjoa A. Tetrahedron 2013; 69: 8583

      For selected examples, see:
    • 8a Cao SL. Feng YP. Jiang YY. S. Liu Y. Ding GY. Li RT. Bioorg. Med. Chem. Lett. 2005; 15: 1915
    • 8b Kung PP. Casper MD. Cook KL. Wilson-Lingardo L. Risen LM. Vickers TA. Ranken R. Blyn LB. Wyatt JR. Cook PD. J. Med. Chem. 1999; 42: 4705
    • 8c De Laszlo SE. Quagliato CS. Greenlee WJ. Patchett AA. Chang RS. L. Lotti VJ. Chen TB. Scheck SA. Faust KA. J. Med. Chem. 1993; 36: 3207
    • 8d Cherm JW. Tao PL. Wang KC. Guicait A. Liu SW. Yen MH. Chien SL. Rong JK. J. Med. Chem. 1998; 41: 3128
    • 8e Malamas MS. Millen J. J. Med. Chem. 1991; 34: 1492
    • 8f Wolfe JF. Rathman TL. Sleevi MC. Campbell JA. Greenwood TD. J. Med. Chem. 1990; 33: 161
    • 8g Mhaske SB. Argade NP. Tetrahedron 2006; 62: 9787
    • 8h Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 8i Steinmuller SR. Puschett JB. Kidney Int. 1972; 1: 169
    • 8j Abbas SE. Awadallah FM. Ibrahin NA. Said EG. Kamel GM. Eur. J. Med. Chem. 2012; 53: 141
    • 8k Rudolph J. Esler WP. Connor SO. Coish PD. Wickens PL. Brands M. Bierer DE. Bloomquist BT. Bondar G. Chen L. J. Med. Chem. 2007; 50: 5202
    • 8l Leivers AL. Tallant M. Shotwell JB. Dickerson S. Leivers MR. McDonald OB. Gobel J. Creech KL. Strum SL. Mathis A. J. Med. Chem. 2014; 57: 2091
    • 8m Aly MM. Mohamed YA. El-Bayouki KA. Basyouni WM. Abbas SY. Eur. J. Med. Chem. 2010; 45: 3365
    • 8n Sharma M. Chauhan K. Shivahare R. Vishwakarma P. Suthar MK. Sharma A. Gupta S. Saxena JK. Lal J. Chandra P. J. Med. Chem. 2013; 56: 4374
    • 8o Kamal A. Bharathi EV. Ramaiah MJ. Dastagiri D. Reddy JS. Viswanath A. Sultana F. Pushpavalli S. Pal-Bhadra M. Srivastava HK. Bioorg. Med. Chem. 2010; 18: 526

      Reviews on quinazolinone alkaloids:
    • 9a Abdou IM. Al-Neyadi SS. Heterocycl. Commun. 2015; 21: 115
    • 9b Khan I. Ibrar A. Abbas N. Saeed A. Eur. J. Med. Chem. 2015; 90: 124
    • 9c He L. Li H. Chen J. Wu X.-F. RSC Adv. 2014; 4: 12065

      For selected examples, see:
    • 10a Padala SR. Padi PR. Thipireddy V. Heterocycles 2003; 60: 183
    • 10b Witt A. Bergman J. Curr. Org. Chem. 2003; 7: 659
    • 10c Ma Z. Hano Y. Nomura T. Heterocycles 2005; 65: 2203
    • 10d Connolly DJ. Cusack D. OSullivan TP. Guiry PJ. Tetrahedron 2005; 61: 10153
    • 10e Demeunynck M. Baussanne I. Curr. Med. Chem. 2013; 20: 794
    • 10f Khan I. Ibrar A. Abbas N. Saeed A. Eur. J. Med. Chem. 2014; 76: 193
    • 10g Duan F. Liu M. Chen J. Ding J. Hu Y. Wu H. RSC Adv. 2013; 3: 24001
  • 12 Isoquinoline-fused quinazolinones were described to display anti-inflammatory activity, see: Ozaki K. Yamada Y. Oine T. Chem. Pharm. Bull. 1984; 32: 2160
    • 13a Yang Y. Zhu C. Zhang M. Huang S. Lin J. Pan X. Su W. Chem. Commun. 2016; 52: 12869
    • 13b Tsukano C. Okuno M. Nishiguchi H. Takemoto Y. Adv. Synth. Catal. 2014; 356: 1533
    • 13c Venkateswarlu S. Satyanarayana M. Lakshmikanthan V. Siddaiah V. J. Heterocycl. Chem. 2015; 52: 1631
    • 13d Venkateswarlu S. Satyanarayana M. Ravikiran P. Siddaiah V. J. Heterocycl. Chem. 2013; 50: 1089
    • 13e Yu Y. Yue Y. Wang D. Li X. Chen C. Peng J. Synthesis 2016; 48: 3941
    • 13f Sun X. Hu Y. Nie S.-Z. Yan Y.-Y. Zhang X.-J. Yan M. Adv. Synth. Catal. 2013; 355: 2179
    • 13g Patil NT. Konala A. Sravanti S. Singh A. Ummanni R. Sridhar B. Chem. Commun. 2013; 49: 10109
    • 13h Xu T. Alper H. Org. Lett. 2015; 17: 1569
    • 13i Oh BK. Ko EB. Han JW. Oh CH. Synth. Commun. 2015; 45: 768
    • 13j Ma Y.-G. Zhang Y. Feng B.-B. Wang X.-S. Res. Chem. Intermed. 2016; 42: 1045
    • 13k Georgey H. Molecules 2014; 19: 3777
    • 13l Ngarita K. Jan B. J. Org. Chem. 2016; 81: 7711
    • 13m Lingayya R. Vellakkaran M. Nagaiah K. Nanubolu JB. Asian J. Org. Chem. 2015; 4: 462
    • 13n Adepu RB. Prasad M. Ashfaq A. Ehtesham NZ. Pal M. RSC Adv. 2014; 4: 49324
    • 13o Volovnenko TA. Tarasov AV. Turov AV. Volovenko YM. Ukr. Khim. Zh. 2007; 73: 44
    • 13p Dighe SU. Batra S. Tetrahedron 2013; 69: 9875
  • 14 Kumar KS. Kumar PM. Reddy MA. Ferozuddin M. Sreenivasulu M. Jafar AA. Krishna GR. Reddy CM. Rambabu D. Kumar KS. Pale S. Pal M. Chem. Commun. 2011; 47: 10263
    • 15a Patil NT. Mutyala AK. Konala A. Tella RB. Chem. Commun. 2012; 48: 3094
    • 15b Patil NT. Mutyala AK. Pediredla GV. V. L. Penmatcha VK. R. Sridhar B. Eur. J. Org. Chem. 2010; 1999
  • 16 CCDC 1819564 for 4a contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 17 Yoshida K. Nishii K. Kano Y. Wada S. Yanagisawa A. J. Org. Chem. 2014; 79: 4231