Synthesis 2018; 50(23): 4591-4605
DOI: 10.1055/s-0037-1611065
feature
© Georg Thieme Verlag Stuttgart · New York

Aryne-Mediated Arylation of Hantzsch Esters: Access to Highly Substituted Aryl-dihydropyridines, Aryl-tetrahydropyridines and Spiro[benzocyclobutene-1,1′-(3′,4′-dihydropyridines)]

Weitao Sun
a   School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK   Email: c.jones@qmul.ac.uk
,
Piera Trinchera
a   School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK   Email: c.jones@qmul.ac.uk
,
Nada Kurdi
a   School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK   Email: c.jones@qmul.ac.uk
,
David Palomas
a   School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK   Email: c.jones@qmul.ac.uk
,
Rachel Crespo-Otero
a   School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK   Email: c.jones@qmul.ac.uk
,
Saeed Afshinjavid
b   Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
,
Farideh Javid
b   Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
,
a   School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK   Email: c.jones@qmul.ac.uk
› Author Affiliations
We are grateful to the EPSRC (EP/M02622/1, C.R.J. and P.T.; EP/K000128/1, R.C.-O.), the Ramsay Memorial Trust (C.R.J.), the China Scholarship Council (W.S.) and the RSC Research Fund for financial support.
Further Information

Publication History

Received: 29 August 2018

Accepted after revision: 27 September 2018

Publication Date:
25 October 2018 (online)


Abstract

This is a full account of our studies into the generation of highly functionalised 2-aryl-1,2-dihydropyridines and 2-methylene-3-aryl-1,2,3,4-tetrahydropyridines via intermolecular aryne ene reactions of Hantzsch esters. Furthermore, exposure to excess aryne revealed unusual 3′-aryl-spiro[benzocyclobutene-1,1′-(3′,4′-dihydropyridines)]. Mechanistic insights are provided by deuterium-labelling studies and DFT calculations, whilst preliminary cytotoxicity investigations reveal that the spirocycles are selective against colon carcinomas over ovarian cancer cell lines and that all the compounds have high selectivity indices with regards to non-cancer cells.

Supporting Information

 
  • References


    • See selected reviews on DHPs and references therein:
    • 1a Wan J.-P. Liu Y. RSC Adv. 2012; 2: 9763
    • 1b Singh SK. Sharma VK. Curr. Org. Chem. 2014; 18: 1159
    • 1c Sharma VK. Singh SK. RSC Adv. 2017; 7: 2682
  • 2 Hantzsch A. Justus Liebigs Ann. Chem. 1882; 215: 1

    • Selected reviews:
    • 3a Ouellet SG. Walji AM. Macmillan DW. C. Acc. Chem. Res. 2007; 40: 1327
    • 3b Zheng C. You S.-L. Chem. Soc. Rev. 2012; 41: 2498
    • 3c Wang D. Astruc D. Chem. Rev. 2015; 115: 6621

      Hydride transfer:
    • 4a Abeles RH. Hutton RF. Westheimer F. J. Am. Chem. Soc. 1957; 79: 712
    • 4b Wu YD. Houk K. J. Am. Chem. Soc. 1987; 109: 2226

      Single electron transfer:
    • 5a Inagaki S. Hirabayashi Y. Bull. Chem. Soc. Jpn. 1977; 50: 3360
    • 5b Gebicki J. Marcinek A. Zielonka J. Acc. Chem. Res. 2004; 37: 379
  • 6 Ene reaction: Hamilton G. Prog. Bioorg. Chem. 1971; 1: 83
  • 7 Edraki N. Mehdipour AR. Khoshneviszadeh M. Miri R. Drug Discovery Today 2009; 14: 1058
    • 8a Review of 1,2-DHPs: Silva EM. P. Varandas PA. M. M. Silva AM. S. Synthesis 2013; 45: 3053
    • 8b Additions to pyridinium species: Bull JA. Mousseau JJ. Pelletier G. Charette AB. Chem. Rev. 2012; 112: 2642

      Selected synthetic examples using:
    • 9a Pre-prepared building blocks: Tejedor D. Cotos L. Méndez-Abt G. García-Tellado F. J. Org. Chem. 2014; 79: 10655
    • 9b 1,2-DHP functionalisation: Zou G.-F. Zhang S.-Q. Wang J.-X. Liao W.-W. J. Org. Chem. 2016; 81: 5717
    • 9c Reductive alkylation of pyridines: Donohoe TJ. McRiner AJ. Sheldrake P. Org. Lett. 2000; 2: 3861
  • 10 Faruk Khan MO. Levi MS. Clark CR. Ablordeppey SY. Law S.-L. Wilson NH. Borne RF. Stud. Nat. Prod. Chem. 2008; 34: 753
  • 11 Satoh N. Akiba T. Yokoshima S. Fukuyama T. Angew. Chem. Int. Ed. 2007; 46: 5734

    • In situ adduct detection:
    • 12a Rosenthal RG. Ebert MO. Kiefer P. Peter DM. Vorholt JA. Erb TJ. Nat. Chem. Biol. 2014; 10: 50
    • 12b Sulzbach RA. Iqbal AF. M. Angew. Chem. Int. Ed. 1971; 10: 733
    • 12c Libby RD. Mehl RA. Bioorg. Chem. 2012; 40: 57
  • 13 2-(Trimethylsilyl)aryl triflate precursors: Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett. 1983; 12: 1211
  • 14 Hexadehydro-Diels–Alder reaction of polyalkynes: Hoye TR. Baire B. Niu D. Willoughby PH. Woods BP. Nature 2012; 490: 208

    • Recent reviews:
    • 15a Tadross PM. Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 15b Hoffmann RW. Suzuki K. Angew. Chem. Int. Ed. 2013; 52: 2655
    • 15c Holden C. Greaney MF. Angew. Chem. Int. Ed. 2014; 53: 5746
    • 15d Yoshida S. Hosoya T. Chem. Lett. 2015; 44: 1450
    • 15e Bhojgude SS. Bhunia A. Biju AT. Acc. Chem. Res. 2016; 49: 1658
    • 15f Karmakar R. Lee D. Chem. Soc. Rev. 2016; 45: 4459
    • 15g García-Lopéz J.-A. Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
    • 15h Shi J. Li Y. Li Y. Chem. Soc. Rev. 2017; 46: 1707
    • 15i Idiris FI. M. Jones CR. Org. Biomol. Chem. 2017; 15: 9044
  • 16 Idiris FI. M. Majesté CE. Craven GB. Jones CR. Chem. Sci. 2018; 9: 2873
    • 17a Candito DA. Panteleev J. Lautens M. J. Am. Chem. Soc. 2011; 133: 14200
    • 17b Karmakar R. Mamidipalli P. Yun SY. Lee D. Org. Lett. 2013; 15: 1938
    • 17c Niu D. Hoye TR. Nat. Chem. 2014; 6: 34
    • 17d Xu H. He J. Shi J. Tan L. Qiu D. Luo X. Li Y. J. Am. Chem. Soc. 2018; 140: 3555

      Hetero-ene:
    • 18a Aly AA. Mohamed NK. Hassan AA. Mourad A.-FE. Tetrahedron 1999; 55: 1111
    • 18b Aly AA. Shaker RM. Tetrahedron Lett. 2005; 46: 2679
    • 18c Pirali T. Zhang F. Miller AH. Head JL. McAusland D. Greaney MF. Angew. Chem. Int. Ed. 2012; 51: 1006
  • 19 Propargylic ene: Jayanth TT. Jeganmohan M. Cheng M.-J. Chu S.-Y. Cheng C.-H. J. Am. Chem. Soc. 2006; 128: 2232

    • Alkene ene:
    • 20a Arnett EM. J. Org. Chem. 1960; 25: 324
    • 20b Simmons HE. J. Am. Chem. Soc. 1961; 83: 1657
    • 20c Friedman L. Osiewicz RJ. Rabideau PW. Tetrahedron Lett. 1968; 9: 5735
    • 20d Wasserman HH. Solodar AJ. Keller LS. Tetrahedron Lett. 1968; 9: 5597
    • 20e Crews P. Beard J. J. Org. Chem. 1973; 38: 522
    • 20f Garsky V. Koster DF. Arnold RT. J. Am. Chem. Soc. 1974; 96: 4207
    • 20g Wasserman HH. Keller LS. Tetrahedron Lett. 1974; 15: 4355
    • 20h Nakayama J. Yoshimura K. Tetrahedron Lett. 1994; 35: 2709
    • 20i Chen Z. Liang J. Yin J. Yu G.-A. Liu SH. Tetrahedron Lett. 2013; 54: 5785
    • 20j Bhojgude SS. Bhunia A. Gonnade RG. Biju AT. Org. Lett. 2014; 16: 676
    • 20k Gupta S. Xie P. Xia Y. Lee D. Org. Chem. Front. 2018; 5: 2208
  • 21 Trinchera P. Sun W. Smith JE. Palomas D. Crespo-Otero R. Jones CR. Org. Lett. 2017; 19: 4644
  • 22 See the Supporting Information for the preparation of starting materials.

    • Intramolecular cyclisation:
    • 23a Aritomi J. Nishimura H. Chem. Pharm. Bull. 1981; 29: 1193
    • 23b Hartman GD. Phillips BT. Halczenko W. J. Org. Chem. 1985; 50: 2423
    • 23c Hartman GD. Halczenko W. Cochran DW. Can. J. Chem. 1986; 64: 556

      Intermolecular alkylation:
    • 24a Patterson JW. J. Heterocycl. Chem. 1986; 23: 1689
    • 24b Rimoli MG. Avallone L. Zanarone S. Abignente E. Mangoni A. J. Heterocycl. Chem. 2002; 39: 1117
  • 25 See the Supporting Information for more details of nOe correlations.

    • For synthetic approaches to spirocyclic compounds, see selected reviews and references therein:
    • 26a Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 26b Roche SP. Tendoung J.-JY. Treguier B. Tetrahedron 2015; 71: 3549
    • 26c James MJ. O’Brien P. Taylor RJ. K. Unsworth WP. Chem. Eur. J. 2016; 22: 2856
    • 26d Xie X. Huang W. Peng C. Han B. Adv. Synth. Catal. 2018; 360: 194
    • 26e Ding A. Meazza M. Guo H. Yang JW. Rios R. Chem. Soc. Rev. 2018; 47: 5946
  • 27 Zheng Y. Tice CM. Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 28a Kametani T. Kigasawa K. Hiiragi M. Hayasaka T. Kusama O. J. Chem. Soc. C 1971; 1051
    • 28b Heaney H. Ley SV. J. Chem. Soc., Perkin Trans. 1 1974; 2693
    • 28c Gingrich HL. Huang Q. Morales AL. Jones M. J. Org. Chem. 1992; 57: 3803
  • 29 See the Supporting Information for full details; calculations were performed using Queen Mary MidPlus computational facilities supported by QMUL Research-IT.
  • 30 See Figure S1 in the Supporting Information for more details.
  • 31 Perez P. Domingo LR. Eur. J. Org. Chem. 2015; 2826
  • 32 See the Supporting Information for full details of biological testing.

    • Selected examples of adverse effects:
    • 33a Pabla N. Dong Z. Kidney Int. 2008; 73: 994
    • 33b Coletti D. Eur. J. Transl. Myol. 2018; 28: 7587
    • 33c Lui G. Bouazza N. Denoyelle F. Moine M. Brugières L. Chastagner P. Corradini N. Entz-Werle N. Vérité C. Landmanparker J. Sudour-Bonnange H. Pasquet M. Verschuur A. Faure-Conter C. Doz F. Tréluyer JM. Oncotarget 2018; 9: 30883
    • 33d Helmy MW. Helmy MM. Abd Allah DM. Abo Zaid AM. Mohy El-DinM. M. J. Physiol. Pharmacol. 2014; 65: 393
    • 33e Zhang Y. Wu J. Ye M. Wang B. Sheng J. Shi B. Chen H. Cancer Cell Int. 2018; 18: 86
    • 33f Kandula T. Farrar MA. Cohn RJ. Mizrahi D. Carey K. Johnston K. Kiernan MC. Krishnan AV. Park SB. JAMA Neurol. 2018; 75: 980
    • 33g Tsuji D. Suzuki K. Kawasaki Y. Goto K. Matsui R. Seki N. Hashimoto H. Hama T. Yamanaka T. Yamamoto N. Itoh K. Support Care Cancer 2018; DOI: in press; 10.1007/s00520-018-4403-y.
  • 34 Example with an imidazole derivative: Watson LJ. Harrington RW. Clegg W. Hall MJ. Org. Biomol. Chem. 2012; 10: 6649