Synlett 2019; 30(05): 519-524
DOI: 10.1055/s-0037-1611381
synpacts
© Georg Thieme Verlag Stuttgart · New York

Carbon Dioxide-Driven Palladium-Catalyzed C–H Activation of Amines: A Unified Approach for the Arylation of Aliphatic and Aromatic Primary and Secondary Amines

,
Pratibha Chand-Thakuri
,
Justin M. Maxwell
,
Daniel Liu
,
Hanyang Zhou
,
Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, 43606, USA   Email: michael.young8@utoledo.edu
› Author Affiliations
We are grateful to start-up funds from The University of Toledo as well as the ACS Herman Frasch Foundation for Chemical Research (830-HF17) in support of this work.
Further Information

Publication History

Received: 24 October 2018

Accepted after revision: 14 November 2018

Publication Date:
08 January 2019 (online)

Abstract

Amines are an important class of compounds in organic chemistry and serve as an important motif in various industries, including pharmaceuticals, agrochemicals, and biotechnology. Several methods have been developed for the C–H functionalization of amines using various directing groups, but functionalization of free amines remains a challenge. Here, we discuss our recently developed carbon dioxide driven highly site-selective γ-arylation of alkyl- and benzylic amines via a palladium-catalyzed C–H bond-activation process. By using carbon dioxide as an inexpensive, sustainable, and transient directing group, a wide variety of amines were arylated at either γ-sp3 or sp2 carbon–hydrogen bonds with high selectivity based on substrate and conditions. This newly developed strategy provides straightforward access to important scaffolds in organic and medicinal chemistry without the need for any expensive directing groups.

1 Introduction

2 C(sp3)–H Arylation of Aliphatic Amines

3 C(sp2)–H Arylation of Benzylamines

4 Mechanistic Questions

5 Future Outlook

 
  • References

    • 1a Guo X, Facchetti A, Marks TJ. Chem. Rev. 2014; 114: 8943
    • 1b Froidevaux V, Negrell C, Caillol S, Pascault J.-P, Boutevin B. Chem. Rev. 2016; 116: 14181
    • 1c Allred TK, Manoni F, Harran PG. Chem. Rev. 2017; 117: 11994
    • 1d Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. Chem. Soc. Rev. 2013; 42: 485
    • 2a Tafazolian H, Samblanet DC, Schmidt JA. R. Organometallics 2015; 34: 1809
    • 2b Huang H, Zhao Y, Yang Y, Zhou L, Chang M. Org. Lett. 2017; 19: 1942
    • 2c Ichikawa S, Zhu S, Buchwald SL. Angew. Chem. Int. Ed. 2018; 57: 8714
    • 2d White DR, Wolfe JP. Chem. Eur. J. 2017; 23: 5419
    • 2e Ariyarathna JP, Wu F, Colombo SK, Hillary CM, Li W. Org. Lett. 2018; 20: 6462
    • 3a He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 3b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 4 Chen W, Ma L, Paul A, Seidel D. Nature Chem. 2018; 10: 165
    • 5a Mack JB. C, Gipson JD, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2017; 139: 9503
    • 5b Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
    • 5c Kolotilo NV, Sinitsa AA, Rassukana YuV, Onys’ko PP. Zh. Obshch. Khim. 2006; 76: 1260
    • 5d Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
    • 5e Chen K, Wang D, Li Z.-W, Liu Z, Pan F, Zhang Y.-F, Shi Z.-J. Org. Chem. Front. 2017; 4: 2097
    • 6a Ping ZM, Cabrera-Pardo JR, Cadahía JP, Gaunt MJ. Chem. Sci. 2018; 9: 7628
    • 6b Nappi M, He C, Whitehurst WG, Chappell BG. N, Gaunt MJ. Angew. Chem. Int. Ed. 2018; 57: 3178
    • 6c Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
    • 6d Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 7a Albert J, Ariza X, Calvet T, Font-Bardia M, Garcia J, Granell J, Lamela A, López B, Martinez M, Ortega L, Rodriguez A, Santos D. Organometallics 2013; 32: 649
    • 7b Lazareva A, Daugulis O. Org. Lett. 2006; 8: 5211
  • 8 Haffemayer B, Gulias M, Gaunt MJ. Chem. Sci. 2011; 2: 312
    • 9a Tan PW, Haughey M, Dixon DJ. Chem. Commun. 2015; 4406
    • 9b Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 7666
    • 9c Dong Z, Wang J, Dong G. J. Am. Chem. Soc. 2015; 137: 5887
    • 9d Feng R, Yao J, Liang Z, Liu Z, Zhang Y. J. Org. Chem. 2013; 78: 3688
  • 10 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
  • 11 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 12a Shi H, Herron AN, Shao Y, Shao Q, Yu J.-Q. Nature 2018; 558: 581
    • 12b Shao Q, Wu Q.-F, He J, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 5322
    • 12c He J, Shao Q, Wu Q, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344
    • 13a Aguilera EY, Sanford MS. Organometallics 2018; DOI: 10.1021/acs.organomet.8b00533.
    • 13b Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599
    • 13c Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
    • 14a Yan S.-Y, Han Y.-Q, Yao Q.-J, Nie X.-L, Liu L, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 9093
    • 14b Zhang Z.-Z, Han Y.-Q, Zhan B.-B, Wang S, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 13145
    • 14c Zhan B.-B, Li Y, Xu J.-W, Nie X.-L, Fan J, Jin L, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 5858
    • 15a Zhang S.-Y, He G, Zhao Y, Wright K, Nack WA, Chen G. J. Am. Chem. Soc. 2012; 134: 7313
    • 15b Zhang S.-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 15c Li Q, Zhang S.-Y, He G, Nack WA, Chen G. Adv. Synth. Catal. 2014; 356: 1544
    • 16a Han J, Zheng Y, Wang C, Zhu Y, Shi D.-Q, Zeng R, Huang Z.-B, Zhao Y. J. Org. Chem. 2015; 80: 9297
    • 16b Liu P, Han J, Chen CP, Shi DQ, Zhao YS. RSC Adv. 2015; 5: 28430
    • 17a St John-Campbell S, Bull JA. Org. Biomol. Chem. 2018; 16: 4582
    • 17b Gandeepan P, Ackermann L. Chemistry 2018; 4: 199
    • 17c Bhattacharya T, Pimparkar S, Maiti D. RSC Adv. 2018; 8: 19456
  • 18 Zhang Y.-F, Zhao H.-W, Wang H, Wei J.-B, Shi Z.-J. Angew. Chem. Int. Ed. 2015; 54: 13686
    • 19a Jun C.-H, Kang J.-B, Kim J.-YJ. Organomet. Chem. 1993; 458: 193
    • 19b Jun C.-H, Han J.-S, Kang J.-B, Kim S.-I. J. Organomet. Chem. 1994; 474: 183
    • 20a Xing D, Dong G. J. Am. Chem. Soc. 2017; 139: 13664
    • 20b Mo F, Dong G. Science 2014; 345: 68
    • 20c Zhang F.-L, Hong K, Li T.-J, Park H, Yu J.-Q. Science 2016; 351: 252
    • 20d Wang J, Dong C, Wu L, Xu M, Lin J, Wei K. Adv. Synth. Catal. 2018; 360: 3709
    • 20e Hong K, Park H, Yu J.-Q. ACS Catal. 2017; 7: 6938
    • 21a Yang K, Li Q, Liu Y.-B, Ge H.-B. J. Am. Chem. Soc. 2016; 138: 12775
    • 21b Chen X.-Y, Sorensen EJ. J. Am. Chem. Soc. 2018; 140: 2789
    • 21c Chen X.-Y, Ozturk S, Sorensen EJ. Org. Lett. 2017; 19: 1140
  • 22 Bedford RB, Limmert ME. J. Org. Chem. 2003; 68: 8669
    • 23a Dangel BD, Godula K, Youn SW, Sezen B, Sames D. J. Am. Chem. Soc. 2002; 124: 11856
    • 23b Dangel BD, Johnson JA, Sames D. J. Am. Chem. Soc. 2001; 123: 8149
    • 23c Johnson JA, Sames D. J. Am. Chem. Soc. 2000; 122: 6321
  • 24 Xu Y, Young MC, Wang D, Magness DM, Dong G. Angew. Chem. Int. Ed. 2016; 55: 9084
  • 25 Liu Y, Ge H. Nature Chem. 2017; 9: 26
  • 26 Wu Y, Chen Y.-Q, Liu T, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14554
  • 27 Lin H, Wang C, Bannister TD, Kamenecka TM. Chem. Eur. J. 2018; 24: 9535
  • 28 Yada A, Liao W, Sato Y, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 1073
  • 29 St John-Campbell S, Ou AK, Bull JA. Chem. Eur. J. 2018; DOI: doi.org/10.1002/chem.201804515.
    • 30a Luo J, Preciado S, Larrosa I. J. Am. Chem. Soc. 2014; 136: 4109
    • 30b Font M, Quibell J, Perry GJ. P, Larrosa I. Chem. Commun. 2017; 3517
    • 30c Font M, Spencer AR. A, Larrosa I. Chem. Sci. 2018; 9: 7133
    • 31a Wang H, Dong B, Wang Y, Li J, Shi Y. Org. Lett. 2014; 16: 186
    • 31b Gockel SN, Hull KL. Org. Lett. 2015; 17: 3236
    • 31c Zhao H, Du H, Yuan X, Wang T, Han W. Green Chem. 2016; 18: 5782
    • 32a Ren W, Yamane M. J. Org. Chem. 2010; 75: 8410
    • 32b Iranpoor N, Firouzabadi H, Motevalli S, Talebi M. Tetrahedron 2013; 69: 418
    • 33a Barcena H, Chen P. J. Chem. Educ. 2016; 93: 202
    • 33b Hudson R, Ackerman HM, Gallo LK, Gwinner AS, Krauss A, Sears JD, Bishop A, Esdale KN, Katz JL. J. Chem. Educ. 2017; 94: 480
    • 33c Baldwin BW, Kuntzleman TS. J. Chem. Educ. 2018; 95: 620
    • 33d McKenzie LC, Thompson JE, Sullivan R, Hutchison JE. Green Chem. 2004; 6: 355
  • 34 Kapoor M, Chand-Thakuri P, Maxwell JM, Young MC. J. Visualized Exp. 2018; 138: e58281
  • 35 Kapoor M, Liu D, Young MC. J. Am. Chem. Soc. 2018; 140: 6818
  • 36 Coomber CE, Benhamou L, Bučar D.-K, Smith PD, Porter MJ, Sheppard TD. J. Org. Chem. 2018; 83: 2495
  • 37 Leitner W. Acc. Chem. Res. 2002; 35: 746
  • 38 Hogg KF, Trowbridge A, Alvarez-Pérez A, Gaunt MJ. Chem. Sci. 2017; 8: 8198
  • 39 Kapoor M, Chand-Thakuri P, Young MC. ChemRxiv 2018; 7138088
  • 40 Wang J, Li R, Dong Z, Liu P, Dong G. Nature Chem. 2018; 10: 866
    • 41a Ozawa F, Ito T, Yamamoto Y. Chem. Lett. 1979; 8: 735
    • 41b Anillo A, Dell’Amico DB, Calderazzo F, Nardelli M, Pelizzi G, Rocchi L. J. Chem. Soc., Dalton Trans. 1991; 2845
    • 41c Srivastava RS, Singh G, Nakano M, Osakada K, Ozawa F, Yamamoto A. J. Organomet. Chem. 1993; 451: 221
  • 42 Song L, Zhu L, Zhang Z, Ye J.-H, Yan S.-S, Han J.-L, Yin Z.-B, Lan Y, Yu D.-G. Org. Lett. 2018; 20: 3776
  • 43 Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632