CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 985-1005
DOI: 10.1055/s-0037-1611659
review
Copyright with the author

Transition-Metal-Catalyzed Alkyl Heck-Type Reactions

Daria Kurandina ‡
,
Padon Chuentragool ‡
,
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607-7061, USA   Email: [email protected]
› Author Affiliations
We thank the National Institutes of Health (GM120281) and National Science Foundation (CHE-1663779) for the financial support of this work.
Further Information

Publication History

Received: 28 December 2018

Accepted: 30 December 2018

Publication Date:
07 February 2019 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

‡ These authors contributed equally.

Abstract

The Heck reaction is one of the most reliable and useful strategies for the construction of C–C bonds in organic synthesis. However, in contrast to the well-established aryl Heck reaction, the analogous reaction employing alkyl electrophiles is much less developed. Significant progress in this area was recently achieved by merging radical-mediated and transition-metal-catalyzed approaches. This review summarizes the advances in alkyl Heck-type reactions from its discovery early in the 1970s up until the end of 2018.

1 Introduction

2 Pd-Catalyzed Heck-Type Reactions

2.1 Benzylic Electrophiles

2.2 α-Carbonyl Alkyl Halides

2.3 Fluoroalkyl Halides

2.4 α-Functionalized Alkyl Halides

2.5 Unactivated Alkyl Electrophiles

3 Ni-Catalyzed Heck-Type Reactions

3.1 Benzylic Electrophiles

3.2 α-Carbonyl Alkyl Halides

3.3 Unactivated Alkyl Halides

4 Co-Catalyzed Heck-Type Reactions

5 Cu-Catalyzed Heck-Type Reactions

6 Other Metals in Heck-Type Reactions

7 Conclusion

 
  • References

    • 1a Oestreich M. The Mizoroki-Heck Reaction . John Wiley & Sons; Chichester: 2009
    • 1b Gharpure SJ, Shelke YG, Reddy SR. B. RSC Adv. 2014; 4: 46962
    • 1c Heck RF. J. Am. Chem. Soc. 1969; 91: 6707
    • 1d Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
    • 1e Dieck HA, Heck RF. J. Am. Chem. Soc. 1974; 96: 1133
    • 1f Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
  • 2 de Meijere A, Bräse S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More . Wiley-VCH; Weinheim: 2014
    • 3a Biajoli AF. P, Schwalm CS, Limberger J, Claudino TS, Monteiro AL. J. Braz. Chem. Soc. 2014; 25: 2186
    • 3b Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 3c de Vries JG. Can. J. Chem. 2001; 79: 1086
    • 3d Majid MH, Razieh M, Masoumeh M. Curr. Org. Chem. 2018; 22: 165
  • 4 Roy D, Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
  • 5 Wang S.-S, Yang G.-Y. Catal. Sci. Technol. 2016; 6: 2862
  • 6 McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
    • 7a Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 7b Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
    • 7c Whitcombe NJ, Hii KK, Gibson SE. Tetrahedron 2001; 57: 7449
    • 7d de Meijere A, Meyer FE. Angew. Chem. Int. Ed. 1995; 33: 2379
  • 8 Ariafard A, Lin Z. Organometallics 2006; 25: 4030
    • 9a Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 9b Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070
    • 9c Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 10a Phapale VB, Buñuel E, García-Iglesias M, Cárdenas DJ. Angew. Chem. Int. Ed. 2007; 46: 8790
    • 10b Schley ND, Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
    • 11a Newcomb M, Toy PH. Acc. Chem. Res. 2000; 33: 449
    • 11b Baldwin JE. Chem. Rev. 2003; 103: 1197
    • 12a Wang C, Lei Y, Guo M, Shang Q, Liu H, Xu Z, Wang R. Org. Lett. 2017; 19: 6412
    • 12b Fan J.-H, Wei W.-T, Zhou M.-B, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 6650
    • 12c Kancherla R, Muralirajan K, Maity B, Zhu C, Krach PE, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; DOI: in press; 10.1002/anie.201811439.
  • 13 Yi P, Zhuangyu Z, Hongwen H. Synthesis 1995; 245
  • 14 Higuchi K, Sawada K, Nambu H, Shogaki T, Kita Y. Org. Lett. 2003; 5: 3703
  • 15 Wang L, Pan Y, Jiang X, Hu H. Tetrahedron Lett. 2000; 41: 725
  • 16 Hu Y.-m, Zhou J, Long X.-t, Han J.-l, Zhu C.-j, Pan Y. Tetrahedron Lett. 2003; 44: 5009
  • 17 Nagayama K, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 1999; 72: 799
  • 18 Narahashi H, Yamamoto A, Shimizu I. Chem. Lett. 2004; 33: 348
  • 19 Yang Z, Zhou J. J. Am. Chem. Soc. 2012; 134: 11833
  • 20 Wu GZ, Lamaty F, Negishi E. J. Org. Chem. 1989; 54: 2507
  • 21 Liu Z, Shi C, Chen Y. Synlett 2008; 1734
  • 22 Zhou W, An G, Zhang G, Han J, Pan Y. Org. Biomol. Chem. 2011; 9: 5833
    • 23a Mori M, Oda I, Ban Y. Tetrahedron Lett. 1982; 23: 5315
    • 23b Mori M, Kanda N, Oda I, Ban Y. Tetrahedron 1985; 41: 5465
  • 24 Glorius F. Tetrahedron Lett. 2003; 44: 5751
  • 25 Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
  • 26 Chen Q.-Y, Yang Z.-Y, Zhao C.-X, Qiu Z.-M. J. Chem. Soc., Perkin Trans. 1 1988; 563
  • 27 Surapanich N, Kuhakarn C, Pohmakotr M, Reutrakul V. Eur. J. Org. Chem. 2012; 5943
  • 28 Feng Z, Min Q.-Q, Zhao H.-Y, Gu J.-W, Zhang X. Angew. Chem. Int. Ed. 2015; 54: 1270
  • 29 Fan T, Meng W.-D, Zhang X. Beilstein J. Org. Chem. 2017; 13: 2610
  • 30 Parasram M, Iaroshenko VO, Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 17926
  • 31 Kurandina D, Parasram M, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
    • 32a Bräse S, Waegell B, de Meijere A. Synthesis 1998; 148
    • 32b Firmansjah L, Fu GC. J. Am. Chem. Soc. 2007; 129: 11340
  • 33 Bloome KS, McMahen RL, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 20146
  • 34 Bloome KS, Alexanian EJ. J. Am. Chem. Soc. 2010; 132: 12823
  • 35 Venning AR. O, Kwiatkowski MR, Roque Peña JE, Lainhart BC, Guruparan AA, Alexanian EJ. J. Am. Chem. Soc. 2017; 139: 11595
  • 36 Dong X, Han Y, Yan F, Liu Q, Wang P, Chen K, Li Y, Zhao Z, Dong Y, Liu H. Org. Lett. 2016; 18: 3774
  • 37 McMahon CM, Alexanian EJ. Angew. Chem. Int. Ed. 2014; 53: 5974
  • 38 Zou YJ, Zhou JR. Chem. Commun. 2014; 50: 3725
  • 39 Wang G.-Z, Shang R, Cheng W.-M, Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
  • 40 Gevorgyan V, Chuentragool P, Yadagiri D, Morita T, Sarkar S, Parasram M, Wang Y. Angew. Chem. Int. Ed. 2019; DOI: in press; 10.1002/anie.201812398.
  • 41 Teng S, Tessensohn ME, Webster RD, Zhou JS. ACS Catal. 2018; 8: 7439
    • 42a Wang G.-Z, Shang R, Fu Y. Org. Lett. 2018; 20: 888
    • 42b Koy M, Sandfort F, Tlahuext-Aca A, Quach L, Daniliuc CG, Glorius F. Eur. J. Chem. 2018; 24: 4552
  • 43 Matsubara R, Jamison TF. J. Am. Chem. Soc. 2010; 132: 6880
  • 44 Matsubara R, Gutierrez AC, Jamison TF. J. Am. Chem. Soc. 2011; 133: 19020
  • 45 Standley EA, Jamison TF. J. Am. Chem. Soc. 2013; 135: 1585
  • 46 Harris MR, Konev MO, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 7825
  • 47 Yu H, Hu B, Huang H. J. Org. Chem. 2018; 83: 13922
  • 48 Liu C, Tang S, Liu D, Yuan J, Zheng L, Meng L, Lei A. Angew. Chem. Int. Ed. 2012; 51: 3638
  • 49 Lebedev SA, Lopatina VS, Petrov ES, Beletskaya IP. J. Organomet. Chem. 1988; 344: 253
  • 50 Millán A, Álvarez de Cienfuegos L, Miguel D, Campaña AG, Cuerva JM. Org. Lett. 2012; 14: 5984
  • 51 Kwiatkowski MR, Alexanian EJ. Angew. Chem. Int. Ed. 2018; 57: 16857
  • 52 Okabe M, Abe M, Tada M. J. Org. Chem. 1982; 47: 1775
  • 53 Busato S, Tinembart O, Zhang Z.-D, Scheffold R. Tetrahedron 1990; 46: 3155
    • 54a Giese B, Erdmann P, Göbel T, Springer R. Tetrahedron Lett. 1992; 33: 4545
    • 54b Torii S, Inokuchi T, Yukawa T. J. Org. Chem. 1985; 50: 5875
    • 54c Ladlow M, Pattenden G. Tetrahedron Lett. 1984; 25: 4317
    • 55a Branchaud BP, Meier MS, Choi Y. Tetrahedron Lett. 1988; 29: 167
    • 55b Branchaud BP, Yu GX. Organometallics 1993; 12: 4262
    • 55c Branchaud BP, Detlefsen WD. Tetrahedron Lett. 1991; 32: 6273
    • 55d Branchaud BP, Meier MS. J. Org. Chem. 1989; 54: 1320
    • 55e Branchaud BP, Choi YL. Tetrahedron Lett. 1988; 29: 6037
    • 55f Branchaud BP, Meier MS. Tetrahedron Lett. 1988; 29: 3191
    • 56a Ikeda Y, Nakamura T, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2002; 124: 6514
    • 56b Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
  • 57 Ikeda Y, Yorimitsu H, Shinokubo H, Oshima K. Adv. Synth. Catal. 2004; 346: 1631
  • 58 Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11125
  • 59 Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM. Org. Lett. 2013; 15: 1634
  • 60 Cao H, Jiang H, Feng H, Kwan JM. C, Liu X, Wu J. J. Am. Chem. Soc. 2018; 140: 16360
  • 61 Liwosz TW, Chemler SR. Org. Lett. 2013; 15: 3034
  • 62 Nishikata T, Noda Y, Fujimoto R, Sakashita T. J. Am. Chem. Soc. 2013; 135: 16372
  • 63 Nishikata T, Itonaga K, Yamaguchi N, Sumimoto M. Org. Lett. 2017; 19: 2686
  • 64 Zhang X, Yi H, Liao Z, Zhang G, Fan C, Qin C, Liu J, Lei A. Org. Biomol. Chem. 2014; 12: 6790
    • 65a Yang F, Fu SY, Chu W, Li C, Tong DG. RSC Adv. 2014; 4: 45838
    • 65b Fu SY, Li YZ, Chu W, Lia C, Tong DG. Catal. Sci. Technol. 2015; 5: 1638
  • 66 Tang C, Zhang R, Zhu B, Fu J, Deng Y, Tian L, Guan W, Bi X. J. Am. Chem. Soc. 2018; 140: 16929
  • 67 Terao J, Watabe H, Miyamoto M, Kambe N. Bull. Chem. Soc. Jpn. 2003; 76: 2209
  • 68 Liu Q, Yi H, Liu J, Yang Y, Zhang X, Zeng Z, Lei A. Eur. J. Chem. 2013; 19: 5120
  • 69 Yu C, Iqbal N, Park S, Cho EJ. Chem. Commun. 2014; 50: 12884
  • 70 Waldhart GW, Mankad NP. J. Organomet. Chem. 2015; 793: 171
  • 71 Zhu N, Zhao J, Bao H. Chem. Sci. 2017; 8: 2081
  • 72 Zong Z, Wang W, Bai X, Xi H, Li Z. Asian J. Org. Chem. 2015; 4: 622
  • 73 Xie J, Li J, Weingand V, Rudolph M, Hashmi AS. K. Eur. J. Chem. 2016; 22: 12646