Synlett 2019; 30(09): 987-996
DOI: 10.1055/s-0037-1611738
synpacts
© Georg Thieme Verlag Stuttgart · New York

Aldehyde Carboxylation: A Concise DFT Mechanistic Study and a Hypothetical Role of CO2 in the Origin of Life

Martin Juhl
a  Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark   Email: jiwoong.lee@chem.ku.dk
,
b  Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
c  Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
,
b  Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
,
b  Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
c  Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
,
a  Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark   Email: jiwoong.lee@chem.ku.dk
› Author Affiliations
The generous support from the Department of Chemistry, University of Copenhagen, and from the Novo Nordisk Fonden (NNF17OC0027598) is gratefully acknowledged (M.J. and J.W.L.). We thank the National Research Foundation (2018R1A2B2005585) and the Institute for Basic Science in Korea (IBS-R010-A1) for financial support (M.J.K., H.Y.L., and M.H.B.).
Further Information

Publication History

Received: 07 January 2019

Accepted after revision: 29 January 2019

Publication Date:
19 March 2019 (eFirst)

# These authors contributed equally

Abstract

Carbon dioxide is arguably one of the most stable carbon-based molecules, yet enzymatic carbon fixation processes enabled the sustainable life cycle on Earth. Chemical reactions involving CO2-functionalization often suffer from low efficiency with highly reactive substrates. We recently reported mild carboxylation of aldehydes to furnish α-keto acids – a building block for chiral α-amino acids via reductive amination. Here, we discuss potential reaction mechanisms of aldehyde carboxylation reactions based on two promoters: NHCs and KCN in the carboxylation reaction. New DFT mechanistic studies suggested a lower reaction barrier for a CO2-functionalization step, implying a potential role of CO2 in prebiotic evolution of organic molecules in the primordial soup.

1 Introduction: Aldehydes, Benzoins, Carboxylic Acids

2 CO2-Activation: NHC, Cyanide, Lewis Acid and Water

3 A Breslow Intermediate: Benzoin Reaction vs. Carboxylation with CO2

4 Carboxylation in the Primordial Soup

5 Conclusion

 
  • References

  • 2 Coates GW, Moore DR. Angew. Chem. Int. Ed. 2004; 43: 6618
  • 3 Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
  • 4 Tran-Vu H, Daugulis O. ACS Catal. 2013; 3: 2417
  • 5 Yeung CS, Dong VM. J. Am. Chem. Soc. 2008; 130: 7826
  • 6 Juhl M, Lee J.-W. Angew. Chem. Int. Ed. 2018; 57: 12318
  • 7 Nair V, Varghese V, Paul RR, Jose A, Sinu CR, Menon RS. Org. Lett. 2010; 12: 2653
  • 8 Gu L, Zhang Y. J. Am. Chem. Soc. 2010; 132: 914
  • 9 Chiang P.-C, Bode JW. Org. Lett. 2011; 13: 2422
  • 10 Delany EG, Fagan C.-L, Gundala S, Zeitler K, Connon SJ. Chem. Commun. 2013; 49: 6513
  • 11 Coates GW, Moore DR. Angew. Chem. Int. Ed. 2004; 43: 6618
  • 12 Luo J, Larrosa I. ChemSusChem 2017; 10: 3317
  • 13 Fontaine F.-G, Courtemanche M.-A, Légaré M.-A, Rochette E. Coord. Chem. Rev. 2017; 334: 124
  • 14 Maeda C, Miyazaki Y, Ema T. Catal. Sci. Technol. 2014; 4: 1482
  • 15 Xin Z, Lescot C, Friis SD, Daasbjerg K, Skrydstrup T. Angew. Chem. Int. Ed. 2015; 54: 6862
  • 16 Yang L, Wang H. ChemSusChem 2014; 7: 962
  • 17 Villiers C, Dognon J.-P, Pollet R, Thuéry P, Ephritikhine M. Angew. Chem. Int. Ed. 2010; 49: 3465
  • 18 Miyazaki M, Shibue M, Ogino K, Nakamura H, Maeda H. Chem. Commun. 2001; 1800
  • 19 Fèvre M, Coupillaud P, Miqueu K, Sotiropoulos J.-M, Vignolle J, Taton D. J. Org. Chem. 2012; 77: 10135
  • 20 Fèvre M, Pinaud J, Leteneur A, Gnanou Y, Vignolle J, Taton D. J. Am. Chem. Soc. 2012; 134: 6776
  • 21 All calculations were carried out using density functional theory (ref. 22) (DFT) implemented in the Jaguar 9.1 suite of programs (ref. 23) at the B3LYP (ref. 24–28) levels of theory for model system and including Grimme’s D3 dispersion correction (ref. 29) for full system. Geometry optimizations were performed with the Los Alamos LACVP** basis set. (ref. 30–32) Then, the energies of optimized structures were reevaluated with high quality triple-ζ basis set cc-pVTZ(–f) (ref. 33). Vibrational frequencies were calculated for with the optimized geometries at the same level of theory as the geometry optimizations. All intermediates were confirmed by observing no imaginary frequency. All transition states were confirmed by observing only one proper imaginary frequency. Calculated zero point vibrational energies and vibrational entropy corrections were used for the suitable approximations of thermodynamics. Finally, solvation correction energies were deduced by using the optimized gas phase geometries. Solvation corrections were evaluated by a self-consistent reaction field (SCRF) approach (ref. 34–36) with a given dielectric constant on the gas-phase optimized structures. The solution phase Gibbs free energies were computed as follows: (1) G(sol) = G(gas) + G solv, (2) G(gas) = H(gas) – TS(gas), (3) H(gas) = E(SCF) + ZPE, (4) ΔG(sol) = ΣG(sol) for products – ΣG(sol) for reactants, where G(sol) is the solvation corrected Gibbs free energy from gas phase free energy G(gas), H(gas) is the enthalpy in gas phase, T is the temperature, S(gas) is the entropy in the gas phase, E(SCF) is the self-consistent field converged electronic energy, and ZPE is the vibrational zero-point energy. Note that entropy we refer to here is specific to the vibrational/rotational/translational entropy of the solute(s). The solvation energy is implicitly included in the continuum model.
  • 22 Parr RG, Yang W. Density Functional Theory of Atoms and Molecules . Oxford University Press; New York: 1989
  • 23 Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA. Int. J. Quantum Chem. 2013; 113: 2110
  • 24 Slater JC. Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field for Molecules and Solids. McGraw-Hill; New York: 1974
  • 25 Vosko SH, Wilk L, Nusair M. Can. J. Phys. 1980; 58: 1200
  • 26 Becke AD. Phys. Rev. A: At., Mol., Opt. Phys. 1988; 38: 3098
  • 27 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 28 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
  • 29 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
  • 30 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 270
  • 31 Wadt WR, Hay PJ. J. Chem. Phys. 1985; 82: 284
  • 32 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 299
  • 33 Dunning TH. Jr. J. Phys. Chem. 1989; 90: 1007
  • 34 Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B. J. Phys. Chem. 1996; 100: 11775
  • 35 Edinger SR, Cortis C, Shenkin PS, Friesner RA. J. Phys. Chem. B 1997; 101: 1190
  • 36 Friedrichs M, Zhou R, Edinger SR, Friesner RA. J. Phys. Chem. B 1999; 103: 3057
  • 37 Huang F, Lu G, Zhao L, Li H, Wang Z.-X. J. Am. Chem. Soc. 2010; 132: 12388
  • 38 Calculated at the level of B3LYP-D3/cc-pVTZ(-f)/PCM(THF)// B3LYP-D3/LACVP** at 298.15 K
  • 39 Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL. J. Org. Chem. 2005; 70: 5335
  • 40 Hu Q, Kluger R. J. Am. Chem. Soc. 2005; 127: 12242
  • 41 Gonzales-James OM, Singleton DA. J. Am. Chem. Soc. 2010; 132: 6896
  • 42 Calculated at the level of B3LYP-D3/cc-pVTZ(-f)/PCM(DMF)// B3LYP-D3/LACVP** at 313.15 K
  • 43 Hirapara P, Riemer D, Hazra N, Gajera J, Finger M, Das S. Green Chem. 2017; 19: 5356
  • 44 Calculated at the level of B3LYP-D3/cc-pVTZ(-f)/PCM(1,4-dioxane)//B3LYP-D3/LACVP** at 373.15 K
  • 45 Xue Y.-P, Cao C.-H, Zheng Y.-G. Chem. Soc. Rev. 2018; 47: 1516
  • 46 Bode JW. Acc. Chem. Res. 2017; 50: 2104
    • 47a Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 47b Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 47c Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355
    • 48a Seo S, Willis MC. Org. Lett. 2017; 19: 4556
    • 48b Wang Q.-Q, Xu K, Jiang Y.-Y, Liu Y.-G, Sun B.-G, Zeng C.-C. Org. Lett. 2017; 19: 5517
    • 48c Sehl T, Bock S, Marx L, Maugeri Z, Walter L, Westphal R, Vogel C, Menyes U, Erhardt M, Muller M, Pohl M, Rother D. Green Chem. 2017; 19: 380
    • 48d Hossian A, Manna MK, Manna K, Jana R. Org. Biomol. Chem. 2017; 15: 6592
    • 48e Feng H, Ermolat’ev DS, Song G, Van der Eycken EV. J. Org. Chem. 2011; 76: 7608
    • 48f Chen R, Zeng L, Huang B, Shen Y, Cui S. Org. Lett. 2018; 20: 3377
    • 48g Doll MK. H. J. Org. Chem. 1999; 64: 1372
    • 49a Zhang W.-Z, Xia T, Yang X.-T, Lu X.-B. Chem. Commun. 2015; 6175
    • 49b Zavesky BP, Bartlett SL, Johnson JS. Org. Lett. 2017; 19: 2126
  • 50 Hung C.-H, Gandeepan P, Cheng L.-C, Chen L-Y, Cheng M.-J, Cheng C.-H. J. Am. Chem. Soc. 2017; 139: 17015
  • 51 Becker S, Schneider C, Crisp A, Carell T. Nat. Commun. 2018; 9: 5174
  • 52 Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Nat. Chem. 2015; 7: 301
  • 54 Miller SL. Science 1953; 117: 528
  • 55 Trainer MG. Curr. Org. Chem. 2013; 17: 1710
    • 56a Charles Y. Angew. Chem. Int. Ed. 2019 58. 2.
    • 56b Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 56c Yang Y.; Lee, J.-W. Chem. Sci. 2019, DOI: 10.1039/C8SC05539D.