Synthesis 2019; 51(12): 2455-2473
DOI: 10.1055/s-0037-1611797
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Electrochemistry for the Synthesis of N-Heterocycles

Najoua Sbei
,
Anna V. Listratova
,
Alexander A. Titov
,
Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation   Email: voskresenskiy-lg@rudn.ru
› Author Affiliations
The publication was prepared with the support of the ‘RUDN University Program 5-100’ and the Russian Foundation for Basic Research (grant 17-03-00605).
Further Information

Publication History

Received: 18 February 2019

Accepted after revision: 22 March 2019

Publication Date:
07 May 2019 (online)


Abstract

The construction of N-heterocyclic rings represents a very important and fast-developing area of organic synthesis. In this context, electrochemistry has emerged as a mild solution for generating in situ the required electrophilic substrates, bases and nucleophiles derived from low-level and extremely stable reagents, the further application of which makes some heterocycles more accessible. In this review, we have covered the recent advances in the electrochemical synthesis of five- and six-membered N-heterocyclic compounds published from 2017 to October 2018.

1 Introduction

2 Electrochemical Synthesis of Five-Membered N-Containing Heterocycles

2.1 Pyrrolidines

2.2 Imidazoles

2.3 Pyrazoles

2.4 Triazoles

2.5 Oxazoles

2.6 Indoles

2.7 Thiazoless

3 Electrochemical Synthesis of Six-Membered N-Containing Heterocycles

3.1 Piperidines and Pyridines

3.2 Quinazolinones

3.3 Benzoxazines

4 Conclusions

 
  • References

  • 1 Li JJ. Heterocyclic Chemistry in Drug Discovery . John Wiley & Sons; Hoboken: 2013
    • 2a Menicagli R, Samaritani S, Signore G, Vaglini F. J. Med. Chem. 2004; 47: 4649
    • 2b Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 2c Ferreire VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Expert Opin. Ther. Pat. 2013; 23: 319
    • 2d Küçükgüzel ŞG, Şenkardeş Ş. Eur. J. Med. Chem. 2015; 97: 786
    • 2e Küçükgüzel ŞG, Çikla-Süzgün P. Eur. J. Med. Chem. 2015; 97: 830
    • 2f Rouf A, Tanyeli G. Eur. J. Med. Chem. 2015; 97: 911
  • 3 Bellobono IR, Morazzoni F, Bianchi R, Mangone ES, Stanescu R, Costache C, Tozzi PM. Int. J. Photoenergy 2005; 7: 87
    • 4a Zhang L, Peng X.-M, Damu GL. V, Geng R.-X, Zhou C.-H. Med. Res. Rev. 2014; 34: 340
    • 4b Wang D, Gao F. Chem. Cent. J. 2013; 7: 1
    • 4c Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
    • 4d Afzal O, Kumar S, Haider RM , Ali MR, Kumar R, Jaggi M, Bawa S. J. Med. Chem. 2015; 97: 871
    • 4e Balaban AT, Oniciu DC, Katritzky AR. Chem. Rev. 2004; 104: 2777
  • 5 Gultekin Z, Elboray EE, Aly MF, Abbas-Temirek HH, Shepherd HJ, Grigg R. Tetrahedron 2014; 70: 4934
    • 6a Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 110000
    • 6b Rajaram S, Sigman MS. Org. Lett. 2002; 4: 3399
    • 7a Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Science 2002; 297: 807
    • 7b Clark JH. Green Chem. 1999; 1: 1
    • 8a Lund H, Hammerich O. Organic Electrochemistry . Marcel Dekker; New York: 2001
    • 8b Fry AJ. Synthetic Organic Electrochemistry . Wiley; New York: 1989
    • 8c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 8d Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 9a Schäfer HJ, Harenbrock M, Klocke E, Plate M, Weiper-Idelmann A. Pure Appl. Chem. 2007; 79: 2047
    • 9b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
    • 10a Tabaković I. Top. Curr. Chem. 1997; 185: 87
    • 10b Moinet C. In Encyclopedia of Electrochemistry, Vol. 8. Bard AJ, Stratmann M. Wiley-VCH; Weinheim: 2004: 341
    • 10c Francke R. Beilstein J. Org. Chem. 2014; 10: 2858
    • 10d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
  • 11 Ye K.-Y, Song Z, Sauer GS, Harenberg JH, Fu N, Lin S. Chem. Eur. J. 2018; 24: 1
  • 12 Herold S, Bafaluy D, Muñiz K. Green Chem. 2018; 20: 3191
  • 13 Hu X, Zhang G, Bu F, Nie L, Lei A. ACS Catal. 2018; 8: 9370
  • 14 Wu Z.-J, Li S.-R, Xu H.-C. Angew. Chem. 2018; 130: 14266
  • 15 Hou Z.-W, Mao Z.-Y, Melcamu YY, Lu X, Xu H.-C. Angew. Chem. 2018; 130: 1652
  • 16 Li L, Luo S. Org. Lett. 2018; 20: 1324
  • 17 Qian P, Yan Z, Zhou Z, Hu K, Wang J, Li Z, Zha Z, Wang Z. Org. Lett. 2018; 20: 6359
  • 18 Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu HC. Angew. Chem. Int. Ed. 2017; 56: 587
  • 19 Ahmed N, Khatoon S. ChemistryOpen 2018; 7: 576
  • 20 Xiong P, Xu H.-H, Xu H.-C. J. Am. Chem. Soc. 2017; 139: 2956
  • 21 Tang S, Gao X, Lei A. Chem. Commun. 2017; 53: 3354
  • 22 Upadhyay A, Sharma LK, Singh VK, Dubey R, Kumar N, Singh RK. P. Tetrahedron Lett. 2017; 58: 1245
  • 23 Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. J. Am. Chem. Soc. 2017; 139: 12317
  • 24 Ye Z, Ding M, Wu Y, Li Y, Hua W, Zhang F. Green Chem. 2018; 20: 1732
  • 25 Yang N, Yuan G. J. Org. Chem. 2018; 83: 11963
  • 26 Wang H, Zhang J, Tan J, Xin L, Li Y, Zhang S, Xu K. Org. Lett. 2018; 20: 2505
  • 27 Koleda O, Broese T, Noetzel J, Roemelt M, Suna E, Francke R. J. Org. Chem. 2017; 82: 11669
  • 28 Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. Chem. Commun. 2017; 53: 2974
  • 29 Qian P, Su J.-H, Wang Y, Bi M, Zha Z, Wang Z. J. Org. Chem. 2017; 82: 6434
  • 30 Xu F, Li Y.-J, Huang C, Xu H.-C. ACS Catal. 2018; 8: 3820
  • 31 Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem. 2018; 36: 909
  • 32 Wu Z.-J, Li S.-R, Long H, Xu H.-C. Chem. Commun. 2018; 54: 4601
  • 33 Haouas B, Sbei N, Ayari H, Benkhoud ML, Batanero B. New J. Chem. 2018; 42: 11776
  • 34 Wang Z.-Q, Meng X.-J, Li Q.-Y, Tang H.-T, Wang H.-S, Pana Y.-M. Adv. Synth. Catal. 2018; 360: 1
  • 35 Zhao H.-B, Liu Z.-J, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 12732
  • 36 Lübbesmeyer M, Leifert D, Schäfer H, Studer A. Chem. Commun. 2018; 54: 2240
  • 37 Kehl A, Breising VM, Schollmeyer D, Waldvogel SR. Chem. Eur. J. 2018; 24: 17230
  • 38 Zhang S, Li L, Xue M, Zhang R, Xu K, Zeng C. Org. Lett. 2018; 20: 3443
  • 39 Mei R, Sauermann N, Oliveira JC. A, Ackermann L. J. Am. Chem. Soc. 2018; 140: 7913
  • 40 Meyer TH, Oliveira JC. A, Sau SC, Ang NW. J, Ackermann L. ACS Catal. 2018; 8: 9140
  • 41 Hou Z.-W, Mao Z.-Y, Song J, Xu H.-C. ACS Catal. 2017; 7: 5810
  • 42 Sbei N, Batanero B, Barba F, Haouas B, Benkhoud ML, Barba I. Tetrahedron 2018; 74: 2068
  • 43 Cao L, Huo H, Zeng H, Yu Y, Lu D, Gong Y. Adv. Synth. Catal. 2018; 360: 4764
  • 44 Wesenberg LJ, Herold S, Shimizu A, Yoshida J, Waldvogel SR. Chem. Eur. J. 2017; 23: 12096
  • 45 Xu F, Qian X.-Y, Li Y.-J, Xu H.-C. Org. Lett. 2017; 19: 6332
  • 46 Yu H, Jiao M, Huang R, Fang X. Eur. J. Org. Chem. 2019; 2004