Synthesis 2019; 51(16): 3021-3054
DOI: 10.1055/s-0037-1611812
review
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Driven Organic Photochemical Reactions in the Absence of External Photocatalysts

Yi Wei
a  CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. of China   Email: luliangqiu@mail.ccnu.edu.cn
,
Quan-Quan Zhou
a  CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. of China   Email: luliangqiu@mail.ccnu.edu.cn
,
Fen Tan*
b  Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Hubei University of Education, Wuhan, Hubei, 430205, P. R. of China   Email: tanfen@hue.edu.cn
,
Liang-Qiu Lu*
a  CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. of China   Email: luliangqiu@mail.ccnu.edu.cn
,
Wen-Jing Xiao
a  CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. of China   Email: luliangqiu@mail.ccnu.edu.cn
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (Grants No. 21822103, 21820102003, 21772052, 21772053, 21572074, 21472057, and 21602052), the Program of Introducing Talents of Discipline to Universities of China (111 Program) (Grant No. B17019), the Natural Science Foundation of Hubei Province (Grant No. 2017AHB047), and the International Joint Research Center for Intelligent Biosensing Technology and Health, and College Outstanding Young Scientific and Technological Innovation Team of Hubei Province (Grant No. T201718) for support of this research.
Further Information

Publication History

Received: 22 February 2019

Accepted after revision: 25 March 2019

Publication Date:
20 May 2019 (online)

Abstract

Visible-light-driven organic photochemical reactions have attracted substantial attention from the synthetic community. Typically, catalytic quantities of photosensitizers, such as transition metal complexes, organic dyes, or inorganic semiconductors, are necessary to absorb visible light and trigger subsequent organic transformations. Recently, in contrast to these photocatalytic processes, a variety of photocatalyst-free organic photochemical transformations have been exploited for the efficient formation of carbon–carbon and carbon–heteroatom bonds. In addition to not requiring additional photocatalysts, they employ low-energy visible light irradiation, have mild reaction conditions, and enable broad substrate diversity and functional group tolerance. This review will focus on a summary of representative work in this field in terms of different photoexcitation modes.

1 Introduction

2 Visible Light Photoexcitation of a Single Substrate

3 Visible Light Photoexcitation of Reaction Intermediates

4 Visible Light Photoexcitation of EDA Complexes between Substrates

5 Visible Light Photoexcitation of EDA Complexes between Substrates and Reaction Intermediates

6 Visible Light Photoexcitation of Products

7 Conclusion and Outlook

 
  • References

  • 1 Ciamician G. Science 1912; 36: 385
    • 2a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 2b Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 3a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 3b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 4a Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 4b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 5 Lang X, Chen X, Zhao J. Chem. Soc. Rev. 2014; 43: 473
    • 6a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77

    • For selected reviews, see:
    • 6b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 6c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 6d Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 6e Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 6f Xuan J, Lu L.-Q, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 2013: 6755
    • 6g Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 6h Peňa-López M, Rosas-Hernndez A, Beller M. Angew. Chem. Int. Ed. 2015; 54: 5006
    • 6i Special Issue on Photoredox Catalysis in Organic Chemistry: Acc. Chem. Res. 2016; (49) 2059
    • 6j Special Issue on Photochemistry in Organic Synthesis: Chem. Rev. (116) 9629
  • 7 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
  • 8 Arbuj SS, Waghmode SB, Ramaswamy AV. Tetrahedron Lett. 2007; 48: 1411
  • 9 Song L, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2014; 20: 14231
    • 10a Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
    • 10b Quinn RK, Könst ZA, Michalak SE, Schmidt Y, Szklarski AR, Flores AR, Nam S, Horne DA, Vanderwal CD, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
  • 11 Ni K, Meng L.-G, Wang K, Wang L. Org. Lett. 2018; 20: 2245
  • 12 Cecere G, König CM, Alleva JL, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 11521
  • 13 Moteki SA, Usui A, Selvakumar S, Zhang T.-X, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 11060
  • 14 Jung J, Kim J, Park G, You Y, Cho EJ. Adv. Synth. Catal. 2016; 358: 74
  • 15 Chen W.-X, Tao H.-C, Huang W.-H, Wang G.-Q, Li S.-H, Cheng X, Li G.-G. Chem. Eur. J. 2016; 22: 9546
    • 16a Buzzetti L, Prieto A, Roy SR, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 15039
    • 16b Goti G, Bieszczad B, Vega-Peñaloza A, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 1213
    • 17a Xu W.-T, Huang B, Dai J.-J, Xu J, Xu H.-J. Org. Lett. 2016; 18: 3114
    • 17b Majek M, Faltermeier U, Dick B, Pérez-Ruiz R, Jacobi von Wangelin A. Chem. Eur. J. 2015; 21: 15496
    • 17c Liu W, Liu P, Lv L, Li C.-J. Angew. Chem. Int. Ed. 2018; 57: 13499
  • 18 Zhao Y.-T, Huang B.-B, Yang C, Xia W.-J. Org. Lett. 2016; 18: 3326
  • 19 Wang C.-L, Qiao J.-Y, Liu X.-C, Song H, Sun Z.-Z, Chu W.-Y. J. Org. Chem. 2018; 83: 1422
    • 20a Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
    • 20b Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200
    • 20c Wei Y, Liu S, Li M.-M, Li Y, Lan Y, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2019; 141: 133
    • 20d Liu J, Li M.-M, Qu B.-L, Lu L.-Q, Xiao W.-J. Chem. Commun. 2019; 55: 2031
    • 20e Liu D, Ding W, Zhou Q.-Q, Wei Y, Lu L.-Q, Xiao W.-J. Org. Lett. 2018; 20: 7278
  • 21 Ishida K, Tobita F, Kusama H. Chem. Eur. J. 2018; 24: 543
    • 22a Zhang H.-J, Becker P, Huang H, Pirwerdjan R, Pan F.-F, Bolm C. Adv. Synth. Catal. 2012; 354: 2157
    • 22b Becker P, Priebbenow DL, Zhang H.-J, Pirwerdjan R, Bolm C. J. Org. Chem. 2014; 79: 814
  • 23 Liu P, Liu W.-B, Li C.-J. J. Am. Chem. Soc. 2017; 139: 14315
  • 24 Shi Q, Li P.-H, Zhang Y, Wang L. Org. Chem. Front. 2017; 4: 1322
  • 25 Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
    • 26a Cheng Y, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2018; 140: 6221
    • 26b Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
  • 27 Kischkewitz M, Gerleve C, Studer A. Org. Lett. 2018; 20: 3666
  • 28 Wang M.-Y, Cao Y, Liu X, Wang N, He L.-N, Li S.-H. Green Chem. 2017; 19: 1240
    • 29a Southgate EH, Pospech J, Fu J, Holycross DR, Sarlah D. Nat. Chem. 2016; 8: 922
    • 29b Okumura M, Shved AS, Sarlah D. J. Am. Chem. Soc. 2017; 139: 17787
    • 29c Hernandez LW, Pospech J, Kloeckner U, Bingham TW, Sarlah D. J. Am. Chem. Soc. 2017; 139: 15656
    • 29d Hernandez LW, Klöckner U, Pospech J, Hauss L, Sarlah D. J. Am. Chem. Soc. 2018; 140: 4503
    • 29e Wertjes WC, Okumura M, Sarlah D. J. Am. Chem. Soc. 2019; 141: 163
  • 30 Leow D.-S, Chen Y.-H, Hung T.-H, Su Y, Lin Y.-Z. Eur. J. Org. Chem. 2014; 2014: 7347
  • 31 Park S, Jung J, Cho E.-J. Eur. J. Org. Chem. 2014; 2014: 4148
    • 32a Tan H, Li H.-J, Ji W.-Q, Wang L. Angew. Chem. Int. Ed. 2015; 54: 8374
    • 32b Ji W.-Q, Tan H, Wang M, Li P.-H, Wang L. Chem. Commun. 2016; 52: 1462
    • 33a Pratsch G, Lackner GL, Overman LE. J. Org. Chem. 2015; 80: 6025
    • 33b Jin Y.-H, Yang H.-J, Fu H. Chem. Commun. 2016; 52: 12909
    • 33c Jin Y.-H, Yang H.-J, Fu H. Org. Lett. 2016; 18: 6400
    • 34a Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
    • 34b Candish L, Teders M, Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
    • 35a Usami K, Nagasawa Y, Yamaguchi E, Tada N, Itoh A. Org. Lett. 2016; 18: 8
    • 35b Qian P, Du B.-N, Song R.-C, Wu X.-D, Mei H.-B, Han J.-L, Pan Y. J. Org. Chem. 2016; 81: 6546
  • 36 Yamaguchi E, Sudo Y, Tada N, Itoh A. Adv. Synth. Catal. 2016; 358: 3191
  • 37 Sudo Y, Yamaguchi E, Itoh A. Org. Lett. 2017; 19: 1610
  • 38 Xu Z, Gao L, Wang L.-L, Gong M.-W, Wang W.-F, Yuan R.-S. ACS Catal. 2015; 5: 45
  • 39 Zhao M.-D, Lu W.-J. Org. Lett. 2017; 19: 4560
  • 40 Huang L, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808
  • 41 Witzel S, Xie J, Rudolph M, Hashmi AS. K. Adv. Synth. Catal. 2017; 359: 1522
  • 42 Liang Y.-F, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
  • 43 Zhang L.-L, Zhang G.-T, Li Y.-L, Wang S.-C, Lei A. Chem. Commun. 2018; 54: 5744
  • 44 Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
  • 45 Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
  • 46 Bonilla P, Rey YP, Holden CM, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 12819
  • 47 Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
  • 48 Woźniak Ł, Magagnano G, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 1068
  • 49 Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
  • 50 Filippini G, Nappi M, Melchiorre P. Tetrahedron 2015; 71: 4535
  • 51 Wu X.-X, Zhang H, Tang N.-N, Wu Z, Wang D.-P, Ji M.-S, Xu Y, Wang M, Zhu C. Nat. Commun. 2018; 9: 3343
  • 52 Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science 2016; 351: 681
    • 53a Sagadevana A, Hwang KC. Adv. Synth. Catal. 2012; 354: 3421
    • 53b Sagadevan A, Ragupathi A, Hwang KC. Photochem. Photobiol. Sci. 2013; 12: 2110
    • 53c Sagadevan A, Ragupathi A, Hwang KC. Angew. Chem. Int. Ed. 2015; 54: 13896
    • 53d Sagadevan A, Ragupathi A, Lin C.-C, Hwu JR, Hwang KC. Green Chem. 2015; 17: 1113
    • 53e Ragupathi A, Sagadevan A, Lin C.-C, Hwu JR, Hwang KC. Chem. Commun. 2016; 52: 11756
    • 53f Sagadevan A, Charpe VP, Hwang KC. Catal. Sci. Technol. 2016; 6: 7688
    • 53g Sagadevan A, Lyu P.-C, Hwang KC. Green Chem. 2016; 18: 4526
    • 53h Sagadevan A, Charpe VP, Ragupathi A, Hwang KC. J. Am. Chem. Soc. 2017; 139: 2896
  • 54 Lei W.-L, Wang T, Feng K.-W, Wu L.-Z, Liu Q. ACS Catal. 2017; 7: 7941
  • 55 Meng Q.-Y, Gao X.-W, Lei T, Liu Z, Zhan F, Li Z.-J, Zhong J.-J, Xiao H.-Y, Feng K, Chen B, Tao Y, Tung C.-H, Wu L.-Z. Sci. Adv. 2017; 3: e1700666
  • 56 Cai S.-Y, Yang K, Wang DZ. Org. Lett. 2014; 16: 2606
  • 57 Zhang T, Meng Y.-G, Lu J.-Y, Yang Y.-T, Li G.-Q, Zhu C.-Y. Adv. Synth. Catal. 2018; 360: 3063
  • 58 Yuan J, To W.-P, Zhang Z.-Y, Yue C.-D, Meng S.-X, Chen J, Liu Y.-G, Yu G.-A, Che C.-M. Org. Lett. 2018; 20: 7816
  • 59 Pham PV, Nagib DA, MacMillan DW. C. Angew. Chem. Int. Ed. 2011; 50: 6119
  • 60 Tobisu M, Furukawa T, Chatani N. Chem. Lett. 2013; 42: 1203
    • 61a Kandukuri SR, Bahamonde A, Chatterjee I, Jurberg ID, Escudero-Adan EC, Melchiorre P. Angew. Chem. Int. Ed. 2015; 54: 1485
    • 61b Zhu M, Zhou K, Zhang X, You SL. Org. Lett. 2018; 20: 4379
  • 62 da Silva GP, Ali A, da Silva RC, Jiang H, Paixão MW. Chem. Commun. 2015; 51: 15110
  • 63 Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
    • 64a Davies J, Booth SG, Essafi S, Dryfe RA. W, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
    • 64b Li JJ, Zhang PX, Jiang M, Yang HJ, Zhao YF, Fu H. Org. Lett. 2017; 19: 1994
    • 64c Li YW, Mao RY, Wu J. Org. Lett. 2017; 19: 4472
    • 64d Mao RY, Yuan Z, Li YW, Wu J. Chem. Eur. J. 2017; 23: 8176
    • 65a Liu NW, Chen ZK, Herbert A, Ren HJ, Manolikakes G. Eur. J. Org. Chem. 2018; 2018: 5725
    • 65b Lecroq W, Bazille P, Morlet-Savary F, Breugst M, Lalevée J, Gaumont AC, Lakhdar S. Org. Lett. 2018; 20: 4164
  • 66 Spell ML, Deveaux K, Bresnahan CG, Bernard BL, Sheffield W, Kumar R, Ragains JR. Angew. Chem. Int. Ed. 2016; 55: 6515
  • 67 Supranovich VI, Levin VV, Struchkova MI, Korlyukov AA, Dilman AD. Org. Lett. 2017; 19: 3215
    • 68a Sun XY, Wang WM, Li YL, Ma J, Yu SY. Org. Lett. 2016; 18: 4638
    • 68b Tang XJ, Studer A. Chem. Sci. 2017; 8: 6888
  • 69 Marzo L, Wang S, König B. Org. Lett. 2017; 19: 5976
  • 70 Zhang J, Li Y, Xu RY, Chen YY. Angew. Chem. Int. Ed. 2017; 56: 12619
  • 71 Arceo E, Bahamonde A, Bergonzini G, Melchiorre P. Chem. Sci. 2014; 5: 2438
  • 72 Nappi M, Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 4921
  • 73 Woźniak Ł, Murphy JJ, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
  • 74 Gao L, Chang B, Qiu WZ, Wang L, Fu XZ, Yuan RS. Adv. Synth. Catal. 2016; 358: 1202
  • 75 Liu Y.-Y, Yu X.-Y, Chen J.-R, Qiao M.-M, Qi X.-T, Shi D.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 9527
    • 76a Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
    • 76b Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2018; 140: 12829
  • 77 Li Y, Miao T, Li PH, Wang L. Org. Lett. 2018; 20: 1735
  • 78 Guo W, Zhao MM, Tan W, Zheng L, Tao KL, Liu LX, Wang XY, Chen DL, Fan XL. J. Org. Chem. 2018; 83: 1402
  • 79 Wu JJ, He L, Noble A, Aggarwal VK. J. Am. Chem. Soc. 2018; 140: 10700
  • 80 Cao ZY, Ghosh T, Melchiorre P. Nat. Commun. 2018; 9: 3274
  • 81 Sahoo B, Hopkinson MN, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 15545
    • 82a Kim I, Min M, Kang D, Kim K, Hong S. Org. Lett. 2017; 19: 1394
    • 82b Ji WQ, Li PH, Yang S, Wang L. Chem. Commun. 2017; 53: 8482
    • 82c Zhao LL, Li PH, Xie XY, Wang L. Org. Chem. Front. 2018; 5: 1689