Synlett 2019; 30(13): 1496-1507
DOI: 10.1055/s-0037-1611878
synpacts
© Georg Thieme Verlag Stuttgart · New York

Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides

Miguel Claros
a  Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain   Email: jlloret@iciq.es
b  University Rovira i Virgili (URV) department of physical and inorganic chemistry, C/Marcel·lí Domingo, 43007 Tarragona, Catalonia, Spain
,
Alicia Casitas
c  Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain   Email: alicia.casitas@udg.edu
,
Julio Lloret-Fillol
a  Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, 43007, Tarragona, Spain   Email: jlloret@iciq.es
d  Catalan Institution for Research and Advanced Studies (ICREA),Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
› Author Affiliations
We acknowledge the financial support from the ICIQ Foundation and MINECO (CTQ2016-80038-R) to J. Ll.-F.
Further Information

Publication History

Received: 26 May 2019

Accepted after revision: 11 June 2019

Publication Date:
17 July 2019 (online)

Abstract

Nonactivated alkyl chlorides are readily available and bench-stable feedstocks; however, they exhibit an inherent chemical inertness, in part, due to their large negative reduction potentials, which have precluded their widespread use as radical precursors in visible-light photocatalysis. Herein, we highlight some recent strategies for activating challenging organic halides under light irradiation, with special emphasis in C(sp3)–halide bonds. In this line, a brief summary of the reactivity of Vitamin B12, F430 cofactor and derivatives is required to comprehend the chemistry behind our developed Cu/M (M = Co, Ni) dual catalytic system. Catalyst design has been key for developing a mild and general photoredox methodology for the intramolecular reductive cyclization of nonactivated alkyl chlorides with tethered alkenes. The cleavage of strong C(sp3)–Cl bonds is mediated by a highly nucleophilic low-valent cobalt or nickel intermediate generated by visible-light photoredox reduction employing a copper photosensitizer.

 
  • References

  • 1 Twilton J, Le CC, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 2 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 3 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
  • 4 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 5 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
  • 6 Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
  • 7 Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138: 475
  • 8 Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
  • 9 Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
  • 10 Nakajima K, Nojima S, Sakata K, Nishibayashi Y. ChemCatChem 2016; 8: 1028
  • 11 Chen W, Liu Z, Tian J, Li J, Ma J, Cheng X, Li G. J. Am. Chem. Soc. 2016; 138: 12312
  • 12 Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
  • 13 Qiu A, Sawyer DT. J. Porphyrins Phthalocyanines 1997; 1: 125
  • 14 Pause L, Robert M, Savéant J.-M. J. Am. Chem. Soc. 1999; 121: 7158
  • 15 Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
  • 16 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
  • 17 Murarka S. Adv. Synth. Catal. 2018; 360: 1735
  • 18 Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
  • 19 Tucker JW, Nguyen JD, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Chem. Commun. 2010; 46: 4985
  • 20 Kim H, Lee C. Angew. Chem. Int. Ed. 2012; 51: 12303
  • 21 Nguyen JD, D‘Amato EM, Jagan MR, Narayanam MR, Stephenson CR. J. Nat. Chem. 2012; 4: 854
  • 22 Neumann M, Füldner S, König B, Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
  • 23 Revol G, McCallum T, Morin M, Gagosz F, Barriault L. Angew. Chem. Int. Ed. 2013; 52: 13342
  • 24 Chow P.-K, Cheng G, Tong GS. M, To W.-P, Kwong W.-L, Low K.-H, Kwok C.-C, Ma C, Che C.-M. Angew. Chem. Int. Ed. 2015; 54: 2084
  • 25 Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
  • 26 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 27 Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
  • 28 Zhang P, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
  • 29 Meyer AU, Slanina T, Heckel A, König B. Chem. Eur. J. 2017; 23: 7900
  • 30 Boyington AJ, Seath CP, Zearfoss AM, Xu Z, Jui NT. J. Am. Chem. Soc. 2019; 141: 4147
  • 31 Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc. 2017; 139: 9467
  • 32 Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
  • 33 Le C, Chen TQ, Liang T, Zhang P, MacMillan DW. C. Science 2018; 360: 1010
  • 34 Devery JJ, Nguyen JD, Dai C, Stephenson CR. J. ACS Catal. 2016; 6: 5962
  • 35 Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
  • 36 Ghosh I, König B. Angew. Chem. Int. Ed. 2016; 55: 7676
  • 37 Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
  • 38 Creutz SE, Lotito KJ, Fu GC, Peters JC. Science 2012; 338: 647
  • 39 Kapturkiewicz A, Angulo G. Dalton Trans. 2003; 3907
  • 40 Bissember AC, Lundgren RJ, Creutz SE, Peters JC, Fu GC. Angew. Chem. Int. Ed. 2013; 52: 5129
  • 41 Ahn JM, Ratani TS, Hannoun KI, Fu GC, Peters JC. J. Am. Chem. Soc. 2017; 139: 12716
  • 42 Do H.-Q, Bachman S, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2014; 136: 2162
  • 43 Neumann WP. Synthesis 1987; 665
  • 44 Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
  • 45 Vechorkin O, Barmaz D, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 12078
  • 46 Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2002; 102: 4009
  • 47 Claros M, Ungeheuer F, Franco F, Martin-Diaconescu V, Casitas A, Lloret-Fillol J. Angew. Chem. Int. Ed. 2019; 58: 4869
  • 48 Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds 2003
  • 49 Lambert FL, Ingall GB. Tetrahedron Lett. 1974; 36: 3231
  • 50 Jaun B, Thauer RK. Metal Ions in Life Sciences, Vol. 2. Sigel A, Sigel H, Sigel RK. O. John Wiley & Sons, Ltd; Weinheim: 2007: 323-356 Chemistry and Biochemistry of B12, Banerjee, R. Ed.; John Wiley: New York, 1999.
  • 51 Chemistry and Biochemistry of B12, Banerjee, R. Ed.; John Wiley: New York, 1999.
  • 52 Halpern J. Science 1985; 227: 869
  • 53 Kräutler B. Biochem. Soc. Trans. 2005; 33: 806
  • 54 Randaccio L, Furlan M, Geremia S, Šlouf M, Srnova I, Toffoli D. Inorg. Chem. 2000; 39: 3403
  • 55 Schrauzer GN, Deutsch E. J. Am. Chem. Soc. 1969; 91: 3341
  • 56 Schrauzer GN. Angew. Chem. Int. Ed. Engl. 1976; 15: 417
  • 57 Halpern J. Chemistry and Significance of Vitamin B2 Model Systems . In 12, Vol. 1. Dolphin D. Wiley; New York: 1982: 501-543
  • 58 Helvenston MC, Castro CE. J. Am. Chem. Soc. 1992; 114: 8490
  • 59 Craft JL, Horng Y.-C, Ragsdale SW, Brunold TC. J. Am. Chem. Soc. 2004; 126: 4068
  • 60 Healy KP, Pletcher D. J. Organomet. Chem. 1978; 161: 109
  • 61 Mubarak MS, Barker WE, Peters DG. J. Electrochem. Soc. 2007; 154: F205
  • 62 Stolzenberg AM, Stershic MT. J. Am. Chem. Soc. 1988; 110: 5397
  • 63 Dey M, Li X, Kunz RC, Ragsdale SW. Biochemistry 2010; 49: 10902
  • 64 Scheffold R, Abrecht S, Orflnski R, Ruf H.-R, Stamouli P, Tinembart O, Walder L, Weymuth C. Pure Appl. Chem. 1989; 59: 363
  • 65 Pattenden G. Chem. Soc. Rev. 1988; 17: 361
  • 66 Hill HA. O, Pratt JM, O’Riordan MP, Williams FR, Williams RJ. P. J. Chem. Soc. A 1971; 1859
  • 67 Alleman KS, Peters DG. J. Electroanal. Chem. 1998; 451: 121
  • 68 Schrauzer GN, Lee LP, Sibert JW. J. Am. Chem. Soc. 1970; 92: 2997
  • 69 Schrauzer GN, Sibert JW, Windgassen RJ. J. Am. Chem. Soc. 1968; 90: 6681
  • 70 Tada M, Kaneko K. J. Org. Chem. 1995; 60: 6635
  • 71 Shimakoshi H, Hisaeda Y. ChemPlusChem 2014; 79: 1250
  • 72 Shimakoshi H, Abiru M, Izumi S.-i, Hisaeda Y. Chem. Commun. 2009; 6427
  • 73 Izumi S.-i, Shimakoshi H, Abe M, Hisaeda Y. Dalton Trans. 2010; 3302
  • 74 Shimakoshi H, Hisaeda Y. Angew. Chem. Int. Ed. 2015; 54: 15439
  • 75 Tian H, Shimakoshi H, Park G, Kim S, You Y, Hisaeda Y. Dalton Trans. 2018; 675
  • 76 Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11125
  • 77 Schrauzer GN, Holland RJ. J. Am. Chem. Soc. 1971; 93: 1505
  • 78 Sun X, Chen J, Ritter T. Nat. Chem. 2018; 10: 1229
  • 79 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 80 Call A, Franco F, Kandoth N, Fernández S, González-Béjar M, Pérez-Prieto J, Luis JM, Lloret-Fillol J. Chem. Sci. 2018; 9: 2609
  • 81 Call A, Codolà Z, Acuña-Parés F, Lloret-Fillol J. Chem. Eur. J. 2014; 20: 6171
  • 82 Call A, Casadevall C, Acuña-Parés F, Casitas A, Lloret-Fillol J. Chem. Sci. 2017; 8: 4739
  • 83 Beesley RM, Ingold CK, Thorpe JF. J. Chem. Soc., Trans. 1915; 107: 1080
  • 84 Ingold CK, Sako S, Thorpe JF. J. Chem. Soc., Trans. 1922; 121: 1177
  • 85 Schrauzer GN, Deutsch E, Windgassen RJ. J. Am. Chem. Soc. 1968; 90: 2441
  • 86 Scheffold R, Dike M, Dike S, Herold T, Walder L. J. Am. Chem. Soc. 1980; 102: 3642