CC BY 4.0 · Synthesis 2019; 51(21): 3915-3946
DOI: 10.1055/s-0037-1611897
review
Copyright with the author

Recent Advances Towards Syntheses of Diterpenoid Alkaloids

,
,
,
Madeline Olsen
,
Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada   Email: mark.lautens@utoronto.ca
› Author Affiliations
We thank the University of Toronto, and the Natural Sciences and Engineering Research Council (NSERC), and the Audrey and Ragnar Olsen Fellowship for financial support. Christian Dank was supported by an Erwin Schroedinger postdoctoral fellowship awarded by the Austrian Science Fund (FWF) J 4348-N28.
Further Information

Publication History

Received: 20 June 2019

Accepted: 28 June 2019

Publication Date:
05 August 2019 (eFirst)

Dedicated to the 50th anniversary of SYNTHESIS

Abstract

The diterpenoid alkaloids serve as a rich source of synthetic targets for organic chemists, due to the intriguing structure of the overlapping ring systems, along with biological activities commonly associated with compounds of this group. Fifteen total syntheses and numerous synthetic studies towards construction of ring fragments have been reported since 2010. This review article gives a brief overview of diterpenoid alkaloids and summarizes the recent synthetic efforts.

1 Introduction

1.1 Structural Classification and Biosynthetic Origin

1.2 Structure Elucidation of the Aconitum Alkaloids

2 Total Syntheses

2.1 C18-Diterpenoid Alkaloids

2.2 C19-Diterpenoid Alkaloids

2.3 C20-Diterpenoid Alkaloids

3 Strategies To Synthesize Ring Systems

3.1 Radical-Based Cyclizations

3.2 Ruthenium-Mediated Enyne Cycloisomerization

3.3 Reductive Coupling

3.4 Diels–Alder Reactions

3.5 Oxidative Dearomatization/Diels–Alder Sequence

3.6 Transannular Aziridation

3.7 Intramolecular [5+2] Cycloaddition

3.8 Miscellaneous

4 Conclusion

 
  • References

    • 2a Atta-ur-Rahman, Iqbal ChoudharyM. Nat. Prod. Rep. 1999; 16: 619
    • 2b Wang F.-P, Chen Q.-H, Liu X.-Y. Nat. Prod. Rep. 2010; 27: 529
    • 2c Wang XW, Xie H. Drugs Future 1999; 24: 877
    • 2d Wang C.-F, Gerner P, Wang S.-Y, Wang GK. Anesthesiology 2007; 107: 82
    • 2e Yang X, Wang G, Ling S, Qiu N, Wang G, Zhu J, Liu J. J. Chromatogr., B 2000; 740: 273
    • 2f Sadikov AZ, Shakirov TT. Chem. Nat. Compd. 1988; 24: 79
  • 3 Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Toxicon 2007; 49: 124
    • 4a Kou KG. M, Kulyk S, Marth CJ, Lee JC, Doering NA, Li BX, Gallego GM, Lebold TP, Sarpong R. J. Am. Chem. Soc. 2017; 139: 13882
    • 4b Song MK, Liu H, Jiang HL, Yue JM, Hu GY, Chen HZ. Neuroscience 2008; 155: 469
    • 4c Wada K. Chemistry and Biological Activity of Diterpenoid Alkaloids. In Studies in Natural Products Chemistry, Vol. 38. Atta-ur-Rahman Elsevier; Amsterdam: 2012: 191-223
    • 4d Zhao X.-Y, Wang Y, Li Y, Chen X.-Q, Yang H.-H, Yue J.-M, Hu G.-Y. Neurosci. Lett. 2003; 337: 33
    • 4e Wada K, Ohkoshi E, Zhao Y, Goto M, Morris-Natschke SL, Lee K.-H. Bioorg. Med. Chem. Lett. 2015; 25: 1525
  • 5 Cherney EC, Baran PS. Isr. J. Chem. 2011; 51: 391
  • 6 The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed. O’Neil MJ, Heckelman PE, Dobbelaar PH, Roman KJ, Kenny CM, Karaffa LS. Royal Society of Chemistry; Cambridge: 2013
    • 7a Dunstan WR. Ber. Dtsch. Chem. Ges. 1894; 27: 664
    • 7b Freund M, Beck P. Ber. Dtsch. Chem. Ges. 1894; 27: 433
    • 8a Dunstan WR, Carr FH. Ber. Dtsch. Chem. Ges. 1895; 28: 1379
    • 8b Freund M. Ber. Dtsch. Chem. Ges. 1895; 28: 2537
    • 8c Freund M. Ber. Dtsch. Chem. Ges. 1895; 28: 192
    • 9a Freudenberg W. Ber. Dtsch. Chem. Ges. 1936; 69: 1962
    • 9b Majima R, Suginomé H. Ber. Dtsch. Chem. Ges. 1924; 57: 1466
    • 9c Schneider W. Chem. Ber. 1956; 89: 768
    • 10a Barger G, Field E. J. Chem. Soc., Trans. 1915; 107: 231
    • 10b Brady OL. J. Chem. Soc., Trans. 1913; 103: 1821
    • 10c Carr FH. J. Chem. Soc., Trans. 1912; 101: 2241
    • 10d Dunstan WR, Andrews AE. J. Chem. Soc., Trans. 1905; 87: 1636
    • 10e Dunstan WR, Carr FH. J. Chem. Soc., Trans. 1894; 65: 290
    • 10f Dunstan WR, Carr FH. J. Chem. Soc., Trans. 1894; 65: 176
    • 10g Dunstan WR, Carr FH. J. Chem. Soc., Trans. 1895; 67: 459
    • 10h Dunstan WR, Harrison EF. J. Chem. Soc., Trans. 1894; 65: 174
    • 10i Henry TA, Sharp TM. J. Chem. Soc. 1931; 581
    • 10j Jowett HA. D. J. Chem. Soc., Trans. 1896; 69: 1518
    • 10k Lawson A. J. Chem. Soc. 1936; 80
    • 10l Lawson A, Topps JE. C. J. Chem. Soc. 1937; 1640
  • 11 Jacobs WA, Elderfield RC. J. Am. Chem. Soc. 1936; 58: 1059
    • 12a Cookson RC, Trevett ME. J. Chem. Soc. 1956; 3121
    • 12b Wiesner K, Götz M, Simmons DL, Fowler LR, Bachelor FW, Brown RF. C, Büchi G. Tetrahedron Lett. 1959; 1: 15
  • 13 Pelletier SW, Oeltmann TN. Tetrahedron 1968; 24: 2019
    • 14a Jacobs WA. J. Org. Chem. 1951; 16: 1593
    • 14b Jacobs WA, Pelletier SW. J. Am. Chem. Soc. 1954; 76: 4048
    • 14c Jacobs WA, Pelletier SW. J. Am. Chem. Soc. 1954; 76: 161
    • 14d Jacobs WA, Pelletier SW. J. Am. Chem. Soc. 1956; 78: 3542
    • 14e Jacobs WA, Pelletier SW. J. Org. Chem. 1957; 22: 1428
    • 14f Locke DM, Pelletier SW. J. Am. Chem. Soc. 1958; 80: 2588
    • 14g Locke DM, Pelletier SW. J. Am. Chem. Soc. 1959; 81: 2246
    • 14h Pelletier SW. J. Am. Chem. Soc. 1960; 82: 2398
    • 14i Pelletier SW, Jacobs WA. J. Am. Chem. Soc. 1954; 76: 4496
    • 14j Pelletier SW, Jacobs WA. J. Am. Chem. Soc. 1956; 78: 4139
    • 14k Pelletier SW, Jacobs WA, Rathgeb P. J. Org. Chem. 1956; 21: 1514
    • 14l Solo AJ, Pelletier SW. J. Am. Chem. Soc. 1959; 81: 4439
  • 15 Pelletier SW, Jacobs WA. J. Am. Chem. Soc. 1956; 78: 4144
    • 16a Guthrie RW, Henry WA, Immer H, Wong CM, Valenta Z, Wiesner K. Collect. Czech. Chem. Commun. 1966; 31: 602
    • 16b Wiesner K, Armstrong R, Bartlett MF, Edwards JA. J. Am. Chem. Soc. 1954; 76: 6068
    • 16c Wiesner K, Edwards JA. Experientia 1955; 11: 255
    • 16d Wiesner K, Figdor SK, Bartlett MF, Henderson DR. Can. J. Chem. 1952; 30: 608
    • 16e Wiesner K, Taylor WI, Figdor SK, Bartlett MF, Armstrong JR, Edwards JA. Chem. Ber. 1953; 86: 800
    • 17a Wiesner K. Chem. Soc. Rev. 1977; 6: 413
    • 17b Wiesner K. Tetrahedron 1985; 41: 485
    • 18a Liu XY, Qin Y. Asian J. Org. Chem. 2015; 4: 1010
    • 18b Zhu G, Liu R, Liu B. Synthesis 2015; 47: 2691
  • 19 Narita K, Fujisaki N, Sakuma Y, Katoh T. Org. Biomol. Chem. 2019; 17: 655
  • 20 Menger M, Lentz D, Christmann M. J. Org. Chem. 2018; 83: 6793
    • 21a Sharpe RJ, Johnson JS. J. Org. Chem. 2015; 80: 9740
    • 21b Kim DE, Zweig JE, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 1479
  • 22 Enomoto M, Morita A, Kuwahara S. Angew. Chem. Int. Ed. 2012; 51: 12833
  • 23 Yang M, Yang X, Sun H, Li A. Angew. Chem. Int. Ed. 2016; 55: 2851
  • 24 Teranishi T, Murokawa T, Enomoto M, Kuwahara S. Biosci., Biotechnol., Biochem. 2015; 79: 11
  • 25 Li H, Chen Q, Lu Z, Li A. J. Am. Chem. Soc. 2016; 138: 15555
    • 26a Suzuki H, Aoyagi S. Org. Lett. 2012; 14: 6374
    • 26b Mori N, Kuzuya K, Watanabe H. J. Org. Chem. 2016; 81: 11866
    • 26c Suzuki H, Aoyagi S. Chem. Commun. 2011; 47: 7878
  • 27 Shi Y, Wilmot JT, Nordstrøm LU, Tan DS, Gin DY. J. Am. Chem. Soc. 2013; 135: 14313
  • 28 Marth CJ, Gallego GM, Lee JC, Lebold TP, Kulyk S, Kou KG. M, Qin J, Lilien R, Sarpong R. Nature 2015; 528: 493
  • 29 Wiesner K, Tsai TY. R, Huber K, Bolton SE, Vlahov R. J. Am. Chem. Soc. 1974; 96: 4990
  • 30 Wiesner K. Pure Appl. Chem. 1975; 41: 93
    • 31a Tsai TY. R, Tsai CS. J, Sy WW, Shanbhag MN, Liu WC, Lee SF, Wiesner K. Heterocycles 1977; 7: 217
    • 31b Lee S.-F, Sathe GM, Sy WW, Ho P.-T, Wiesner K. Can. J. Chem. 1976; 54: 1039
  • 32 Wiesner K, Tsai TY. R, Nambiar KP. Can. J. Chem. 1978; 56: 1451
    • 33a Tsai TY. R, Nambiar KP, Krikorian D, Botta M, Marini-Bettolo R, Wiesner K. Can. J. Chem. 1979; 57: 2124
    • 33b Wiesner K. Pure Appl. Chem. 1979; 51: 689
  • 34 Nishiyama Y, Yokoshima S, Fukuyama T. Org. Lett. 2017; 19: 5833
  • 35 Nagata W, Sugasawa T, Narisada M, Wakabayashi T, Hayase Y. J. Am. Chem. Soc. 1963; 85: 2342
  • 36 Masamune S. J. Am. Chem. Soc. 1964; 86: 291
  • 37 Guthrie RW, Valenta Z, Wiesner K. Tetrahedron Lett. 1966; 7: 4645
  • 38 Nagata W, Sugasawa T, Narisada M, Wakabayashi T, Hayase Y. J. Am. Chem. Soc. 1967; 89: 1483
  • 39 Ihara M, Suzuki M, Fukumoto K, Kametani T, Kabuto C. J. Am. Chem. Soc. 1988; 110: 1963
  • 40 Ihara M, Suzuki M, Fukumoto K, Kabuto C. J. Am. Chem. Soc. 1990; 112: 1164
  • 41 Liu X.-Y, Cheng H, Li X.-H, Chen Q.-H, Xu L, Wang F.-P. Org. Biomol. Chem. 2012; 10: 1411
    • 42a Masamune S. J. Am. Chem. Soc. 1964; 86: 290
    • 42b Nagata W, Narisada M, Wakabayashi T, Sugasawa T. J. Am. Chem. Soc. 1964; 86: 929
    • 42c Valenta Z, Wiesner K, Wong CM. Tetrahedron Lett. 1964; 5: 2437
  • 43 Nagata W, Narisada M, Wakabayashi T, Sugasawa T. J. Am. Chem. Soc. 1967; 89: 1499
  • 44 Wiesner K, Uyeo S, Philipp A, Valenta Z. Tetrahedron Lett. 1968; 9: 6279
    • 45a Wiesner K, Ho P.-T, Tsai CS. J. Can. J. Chem. 1974; 52: 2353
    • 45b Wiesner K, Ho P.-T, Tsai CS. J, Lam Y.-K. Can. J. Chem. 1974; 52: 2355
  • 46 Sethi SP, Atwal KS, Marini-Bettolo RM, Tsai TY. R, Wiesner K. Can. J. Chem. 1980; 58: 1889
  • 47 Muratake H, Natsume M. Angew. Chem. Int. Ed. 2004; 43: 4646
    • 48a Muratake H, Natsume M, Nakai H. Tetrahedron 2006; 62: 7093
    • 48b Peese KM, Gin DY. J. Am. Chem. Soc. 2006; 128: 8734
  • 49 Peese KM, Gin DY. Chem. Eur. J. 2008; 14: 1654
  • 50 Cherney EC, Lopchuk JM, Green JC, Baran PS. J. Am. Chem. Soc. 2014; 136: 12592
  • 51 Nishiyama Y, Han-ya Y, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2014; 136: 6598
  • 52 Kou KG. M, Li BX, Lee JC, Gallego GM, Lebold TP, DiPasquale AG, Sarpong R. J. Am. Chem. Soc. 2016; 138: 10830
  • 53 Li X.-H, Zhu M, Wang Z.-X, Liu X.-Y, Song H, Zhang D, Wang F.-P, Qin Y. Angew. Chem. Int. Ed. 2016; 55: 15667
  • 54 Cheng H, Zeng F.-H, Yang X, Meng Y.-J, Xu L, Wang F.-P. Angew. Chem. Int. Ed. 2016; 55: 392
  • 55 Liu J, Ma D. Angew. Chem. Int. Ed. 2018; 57: 6676
  • 56 Kou KG. M, Pflueger JJ, Kiho T, Morrill LC, Fisher EL, Clagg K, Lebold TP, Kisunzu JK, Sarpong R. J. Am. Chem. Soc. 2018; 140: 8105
  • 57 Zhou S, Guo R, Yang P, Li A. J. Am. Chem. Soc. 2018; 140: 9025
  • 58 Curran TT, Hay DA, Koegel CP, Evans JC. Tetrahedron 1997; 53: 1983
  • 59 Al Dulayymi AR, Al Dulayymi JR, Baird MS, Gerrard ME, Koza G, Harkins SD, Roberts E. Tetrahedron 1996; 52: 3409
  • 60 Forsyth CJ, Clardy J. J. Am. Chem. Soc. 1990; 112: 3497
  • 61 Prabhakaran J, Lhermitte H, Das J, Sasi-Kumar TK, Grierson DS. Synlett 2000; 658
  • 62 Marx JN, Cox JH, Norman LR. J. Org. Chem. 1972; 37: 4489
  • 63 Bandyopadhyaya AK, Manion BD, Benz A, Taylor A, Rath NP, Evers AS, Zorumski CF, Mennerick S, Covey DF. Bioorg. Med. Chem. Lett. 2010; 20: 6680
  • 64 Lee J, Kim M, Chang S, Lee H.-Y. Org. Lett. 2009; 11: 5598
  • 65 Cuerva JM, Campaña AG, Justicia J, Rosales A, Oller-López JL, Robles R, Cárdenas DJ, Buñuel E, Oltra JE. Angew. Chem. Int. Ed. 2006; 45: 5522
  • 66 Zhou R.-J, Dai G.-Y, Zhou X.-H, Zhang M.-J, Wu P.-Z, Zhang D, Song H, Liu X.-Y, Qin Y. Org. Chem. Front. 2019; 6: 377
  • 67 Nishiyama Y, Yokoshima S, Fukuyama T. Org. Lett. 2016; 18: 2359
  • 68 Pelletier SW, Parthasarathy PC. Tetrahedron Lett. 1963; 4: 205
  • 69 Zhu M, Li X, Song X, Wang Z, Liu X, Song H, Zhang D, Wang F, Qin Y. Chin. J. Chem. 2017; 35: 991
  • 70 Han G, LaPorte MG, McIntosh MC, Weinreb SM, Parvez M. J. Org. Chem. 1996; 61: 9483
  • 71 Sasano Y, Nagasawa S, Yamazaki M, Shibuya M, Park J, Iwabuchi Y. Angew. Chem. Int. Ed. 2014; 53: 3236
  • 72 Pflueger JJ, Morrill LC, deGruyter JN, Perea MA, Sarpong R. Org. Lett. 2017; 19: 4632
  • 73 Griffith WP, Ley SV, Whitcombe GP, White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
  • 74 Lebel H, Paquet V. J. Am. Chem. Soc. 2004; 126: 320
  • 75 Donnelly DM. X, Finet J.-P, Rattigan BA. J. Chem. Soc., Perkin Trans. 1 1993; 1729
  • 76 Dessolin M, Guillerez M.-G, Thieriet N, Guibé F, Loffet A. Tetrahedron Lett. 1995; 36: 5741
  • 77 Kulbitski K, Nisnevich G, Gandelman M. Adv. Synth. Catal. 2011; 353: 1438
  • 78 Heinzman SW, Ganem B. J. Am. Chem. Soc. 1982; 104: 6801
  • 79 Trost BM, Tang W. J. Am. Chem. Soc. 2002; 124: 14542
  • 80 Zhang Q, Zhang Z, Huang Z, Zhang C, Xi S, Zhang M. Angew. Chem. Int. Ed. 2018; 57: 937
  • 81 Weitz E, Scheffer A. Ber. Dtsch. Chem. Ges. 1921; 54: 2327
  • 82 Chen Y.-K, Peddinti RK, Liao C.-C. Chem. Commun. 2001; 1340
  • 83 Chittimalla SK, Shiao H.-Y, Liao C.-C. Org. Biomol. Chem. 2006; 4: 2267
  • 84 Herrmann JL, Kieczykowski GR, Schlessinger RH. Tetrahedron Lett. 1973; 14: 2433
  • 85 Hibino JH, Okazoe T, Takai K, Nozaki H. Tetrahedron Lett. 1985; 26: 5579
  • 86 Bal BS, Childers WE, Pinnick HW. Tetrahedron 1981; 37: 2091
  • 87 Shigeru I, Teruaki M. Chem. Lett. 1989; 18: 1071
  • 88 Hagiwara K, Tabuchi T, Urabe D, Inoue M. Chem. Sci. 2016; 7: 4372
  • 89 Tabuchi T, Urabe D, Inoue M. J. Org. Chem. 2016; 81: 10204
  • 90 Minagawa K, Urabe D, Inoue M. J. Antibiot. 2017; 71: 326
  • 91 Liu M, Cheng C, Xiong W, Cheng H, Wang J.-L, Xu L. Org. Chem. Front. 2018; 5: 1502
  • 92 Cheng H, Xu L, Chen D.-L, Chen Q.-H, Wang F.-P. Tetrahedron 2012; 68: 1171
  • 93 Li Y.-L, Liu M.-C, Meng Y.-J, Xu L. Tetrahedron 2016; 72: 3171
    • 94a Trost BM, Ferreira EM, Gutierrez AC. J. Am. Chem. Soc. 2008; 130: 16176
    • 94b Trost BM, Gutierrez AC, Ferreira EM. J. Am. Chem. Soc. 2010; 132: 9206
  • 95 Zhou X.-H, Liu Y, Zhou R.-J, Song H, Liu X.-Y, Qin Y. Chem. Commun. 2018; 54: 12258
  • 96 Cheng H, Zeng F.-H, Ma D, Jiang M.-L, Xu L, Wang F.-P. Org. Lett. 2014; 16: 2299
  • 97 Matsuzawa A, Kasamatsu A, Sugita K. Tetrahedron Lett. 2016; 57: 4585
  • 98 Sparrow K, Barker D, Brimble MA. Tetrahedron 2011; 67: 7989
  • 99 Liu Z.-G, Xu L, Chen Q.-H, Wang F.-P. Tetrahedron 2012; 68: 159
  • 100 Yang T.-K, Hung S.-M, Lee D.-S, Hong A.-W, Cheng C.-C. Tetrahedron Lett. 1989; 30: 4973
  • 101 Goodall KJ, Brimble MA, Barker D. Tetrahedron 2012; 68: 5759
  • 102 Liu X.-Y, Qin Y. Nat. Prod. Rep. 2017; 34: 1044
  • 103 Yang X, Cheng B, Cheng H, Xu L, Wang J.-L. Chin. Chem. Lett. 2017; 28: 1788
  • 104 Hamlin AM, Lapointe D, Owens K, Sarpong R. J. Org. Chem. 2014; 79: 6783
  • 105 Chen DL, Wang FP. Chin. Chem. Lett. 2012; 23: 1378
  • 106 Tang D.-H, Ma D, Cheng H, Li Y.-L, Xu L. Org. Biomol. Chem. 2016; 14: 2716
  • 107 Liu Z.-G, Cheng H, Ge M.-J, Xu L, Wang F.-P. Tetrahedron 2013; 69: 5431
  • 108 Haruta J, Nishi K, Matsuda S, Akai S, Tamura Y, Kita Y. J. Org. Chem. 1990; 55: 4853
  • 109 Staben ST, Kennedy-Smith JJ, Toste FD. Angew. Chem. Int. Ed. 2004; 43: 5350
  • 110 Nagata W, Hirai S, Kawata K, Aoki T. J. Am. Chem. Soc. 1967; 89: 5045
  • 111 Mei R.-H, Liu Z.-G, Cheng H, Xu L, Wang F.-P. Org. Lett. 2013; 15: 2206
  • 112 Chou H.-H, Wu H.-M, Wu J.-D, Ly TW, Jan N.-W, Shia K.-S, Liu H.-J. Org. Lett. 2008; 10: 121
  • 113 Jiang M.-L, Meng Y.-J, Xiong W.-Y, Xu L. Tetrahedron Lett. 2016; 57: 1610
  • 114 Liu Y, Zhang Y, Wang X, Fu S, Liu B. Synlett 2018; 29: 1978
  • 115 Liu Y, Wang X, Chen S, Fu S, Liu B. Org. Lett. 2018; 20: 2934
  • 116 Doering NA, Kou KG. M, Norseeda K, Lee JC, Marth CJ, Gallego GM, Sarpong R. J. Org. Chem. 2018; 83: 12911
  • 117 Takaya Y, Ogasawara M, Hayashi T. Tetrahedron Lett. 1999; 40: 6957
  • 118 Yang Z.-K, Chen Q.-H, Wang F.-P. Tetrahedron 2011; 67: 4192