Synthesis 2019; 51(14): 2737-2758
DOI: 10.1055/s-0037-1612061
review
© Georg Thieme Verlag Stuttgart · New York

Syntheses of Post-Iboga Alkaloids

Hyeonggeun Lim
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea   Email: sunkyu.han@kaist.ac.kr
,
Sikwang Seong
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea   Email: sunkyu.han@kaist.ac.kr
,
Sunkyu Han*
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea   Email: sunkyu.han@kaist.ac.kr
› Author Affiliations
This work was supported by the National Research Foundation of Korea with a grant funded by the Korean government (MSIT) (2018R1A2B6004479).
Further Information

Publication History

Received: 11 November 2018

Accepted: 18 December 2018

Publication Date:
19 February 2019 (online)


Published as part of the Bürgenstock Special Section 2018 Future Stars in Organic Chemistry

This paper is dedicated to Prof. Byong-Seok Choi in memory of his retirement.

Abstract

Post-iboga alkaloids are secondary metabolites that are biosynthetically derived from iboga-type alkaloids via rearrangements of the indole and/or isoquinuclidine moieties. Herein, we categorize post-iboga alkaloids into five types based on the biosynthetic mode of transformation of the iboga scaffold. We then describe reported syntheses of post-iboga alkaloids, including our laboratory’s recent contributions, based on our own categorization.

1 Introduction

1.1 Iboga and Post-Iboga Alkaloids

1.2 Classification of Post-Iboga Alkaloids

1.2.1 Introduction to Type I Post-Iboga Alkaloids

1.2.2 Introduction to Type II Post-Iboga Alkaloids

1.2.3 Introduction to Type III Post-Iboga Alkaloids

1.2.4 Introduction to Type IV Post-Iboga Alkaloids

1.2.5 Introduction to Type V Post-Iboga Alkaloids

2 Syntheses of Post-Iboga Alkaloids

2.1 Syntheses of Type I Post-Iboga Alkaloids

2.1.1 Syntheses of Monomeric Type I Post-Iboga Alkaloids

2.1.2 Syntheses of Dimeric Type I Post-Iboga Alkaloids

2.2 Syntheses of Type II Post-Iboga Alkaloids

2.3 Synthetic Studies Toward Type III Post-Iboga Alkaloids

2.4 Syntheses of Type IV Post-Iboga Alkaloids

2.5 Synthesis of Type V Post-Iboga Alkaloids

3 Conclusion and Outlook

 
  • References

  • 1 Dybowsky J, Landrin E. Acad. Sci. (Paris) 1901; 133: 748
  • 2 Bartlett MF, Dickel DF, Taylor WI. J. Am. Chem. Soc. 1958; 80: 126
    • 3a Jana GK, Paul S, Sinha S. Org. Prep. Proced. Int. 2011; 43: 541
    • 3b Lavaud C, Massiot G. The Iboga Alkaloids . In Progress in the Chemistry of Organic Natural Products, Vol. 105. Kinghorn AD, Falk H, Gibbons S, Kobayashi J. Springer International Publishing; Cham: 2017: 89
    • 4a Alper KR, Lotsof HS, Frenken GM. N, Luciano DJ, Bastiaans J. Am. J. Addict. 1999; 8: 234
    • 4b Alper KR. In The Alkaloids, Vol. 56. Cordell GA. Academic Press; London: 2001: 1
    • 4c Alper KR, Lotsof HS, Kaplan CD. J. Ethnopharmacol. 2008; 115: 9
    • 5a Guo L.-L, Zhang Y, He H.-P, Li Y, Yu J.-P, Hao X.-J. Chin. J. Nat. Med. 2012; 10: 226
    • 5b Nge C.-E, Gan C.-Y, Low Y.-Y, Thomas NF, Kam T.-S. Org. Lett. 2013; 15: 4774
    • 5c Ma K, Wang J.-S, Luo J, Yang M.-H, Kong L. J. Nat. Prod. 2014; 77: 1156
    • 5d Tang B-Q, Wang W.-J, Huang X.-J, Li G.-Q, Wang L, Jiang R.-W, Yang T.-T, Shi L, Zhang X.-Q, Ye W.-C. J. Nat. Prod. 2014; 77: 1839
    • 5e Lim K.-H, Raja VJ, Bradshaw TD, Lim S.-H, Low Y.-Y, Kam T.-S. J. Nat. Prod. 2015; 78: 1129
    • 5f Zhang D.-B, Yu D.-G, Sun M, Zhu X.-X, Yao X.-J, Zhou S.-Y, Chen J.-J, Gao K. J. Nat. Prod. 2015; 78: 1253
    • 5g Nge C.-E, Sim K.-S, Lim S.-H, Thomas NF, Low Y.-Y, Kam T.-S. J. Nat. Prod. 2016; 79: 2709
    • 5h Liu Z.-W, Tang B.-Q, Zhang Q.-H, Wang W.-J, Huang X.-J, Zhang J, Shi L, Zhang X.-Q, Ye W.-C. RSC Adv. 2017; 7: 21883
    • 5i Srivastava S, Singh MM, Kulshreshtha D. K. Planta Med. 2001; 67: 577
  • 6 Seong S, Lim H, Han S. Chem. 2019; 5: 353
  • 7 Caputi L, Franke J, Farrow SC, Chung K, Payne RM. E, Nguyen T.-D, Dang T.-TT, Carqueijeiro IS. T, Koudounas K, de Bernonville TD, Ameyaw B, Jones DM, Vieira IJ. C, Courdavault V, O’Connor SE. Science 2018; 360: 1235
  • 8 Zhu X, Zeng X, Sun C, Chen S. Front. Med. 2014; 8: 285
  • 9 Qu Y, Easson ME. A. M, Simionescu R, Hajicek J, Thamm AM. K, Salim V, De Luca V. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 3180
  • 10 Qu Y, Easson ML. A. E, Froese J, Simionescu R, Hudlicky T, De Luca V. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 6224
  • 11 Sottomayor M, Ros Barceló A. Protoplasma 2003; 222: 97
    • 12a Kuehne ME, Bornmann WG, Earley WG, Marko I. J. Org. Chem. 1986; 51: 2913
    • 12b Bornmann WG, Kuehne ME. J. Org. Chem. 1992; 57: 1752
    • 12c Kuehne ME, Wilson TE, Bandarage UK, Dai W, Yu Q. Tetrahedron 2001; 57: 2085
    • 12d Kuehne ME, He L, Jokiel PA, Pace CJ, Fleck MW, Maisonneuve IM, Glick SD, Bidlack JM. J. Med. Chem. 2003; 46: 2716
  • 13 Clivio P, Richard B, Hadi HA, David B, Sevenet T, Zeches M, Le Men-Olivier L. Phytochemistry 1990; 29: 3007
  • 14 Van Beek TA, Verpoorte R, Svendsen AB. J. Nat. Prod. 1985; 48: 400
    • 15a Nielsen HB, Hazell A, Hazell R, Ghia F, Torssell KB. G. Phytochemistry 1994; 37: 1729
    • 15b Kam T.-S, Sim K.-M. Nat. Prod. Lett. 1999; 13: 143
    • 15c Kam T.-S, Sim K.-M. Heterocycles 2001; 55: 2405
    • 15d Kam T.-S, Sim K.-M. Heterocycles 1999; 51: 345
  • 16 Kam T.-S, Sim K.-W, Lim T.-M. Tetrahedron Lett. 2000; 41: 2733
    • 17a Goldblatt A, Hootele C, Pecher J. Phytochemistry 1970; 9: 1293
    • 17b Clivio P, Richard B, Deverre J.-R, Sevenet T, Zeches M, Le Men-Oliver L. Phytochemistry 1991; 30: 3785
  • 18 Low Y.-Y, Lim K.-H, Choo Y.-M, Pang H.-S, Etoh T, Hayashi M, Komiyama K, Kam T.-S. Tetrahedron Lett. 2010; 51: 269
  • 19 Gorman M, Neuss N, Cone NJ. J. Am. Chem. Soc. 1965; 87: 93
  • 20 Kutney JP, Cretney WJ, Le Quesne P, McKague B, Piers E. J. Am. Chem. Soc. 1966; 88: 4756
  • 21 Büchi G, Kulsa P, Ogasawara K, Rosati RL. J. Am. Chem. Soc. 1970; 92: 999
    • 22a Büchi G, Coffen DL, Kocsis K, Sonnet PE, Ziegler FE. J. Am. Chem. Soc. 1965; 87: 2073
    • 22b Büchi G, Coffen DL, Kocsis K, Sonnet PE, Ziegler FE. J. Am. Chem. Soc. 1966; 88: 3099
  • 23 Kutney JP, Bylsma F. Helv. Chim. Acta 1975; 58: 1672
  • 24 Takano S, Uchida W, Hatakeyama S, Ogasawara K. Chem. Lett. 1982; 733
  • 25 Taniguchi M, Koga K, Yamada S. Tetrahedron 1974; 30: 3547
  • 26 Takano S, Goto E, Hirama M, Ogasawara K. Heterocycles 1981; 16: 951
  • 27 Danieli B, Lesma G, Passarella D, Silvani A. Tetrahedron Lett. 2000; 41: 3489
  • 28 Danieli B, Lesma G, Passarella D, Silvani A. J. Org. Chem. 1998; 63: 3492
  • 29 Kanada RM, Ogasawara K. Tetrahedron Lett. 2001; 42: 7311
    • 30a Taniguchi T, Ogasawara K. Chem. Commun. 1997; 1399
    • 30b Taniguchi T, Kanada RM, Ogasawara K. Tetrahedron: Asymmetry 1997; 8: 2773
    • 30c Taniguchi T, Ogasawara K. Tetrahedron Lett. 1997; 38: 6429
  • 31 Amat M, Escolano C, Lozano O, Llor N, Bosch J. Org. Lett. 2003; 5: 3139
  • 32 Bennasar M.-L, Solé D, Zulaica E, Alonso S. Org. Lett. 2011; 13: 2042
  • 33 Leitner C, Gaich T. Chem. Commun. 2017; 53: 7451
    • 34a Harley-Mason J. Atta-ur-Rahman J. Chem. Soc., Chem. Commun. 1967; 1048
    • 34b Harley-Mason J. Atta-ur-Rahman Tetrahedron 1980; 36: 1057
    • 35a Kutney JP, Beck J, Bylsma F, Cretney WJ. J. Am. Chem. Soc. 1968; 90: 4504
    • 35b Kutney JP, Beck J, Bylsma F, Cook J, Cretney WJ, Fuji K, Imhof R, Treasurywala AM. Helv. Chim. Acta 1975; 58: 1690
    • 35c Kutney JP, Hibino T, Jahngen E, Okutani T, Ratcliffe AH, Treasurywala AM, Wunderly S. Helv. Chim. Acta 1976; 59: 2858
    • 36a Wenkert E, Hagaman EW, Kunesch N, Wang N, Zsadon B. Helv. Chim. Acta 1976; 59: 2711
    • 36b Kunesch N, Vaucamps P.-L, Cavé A, Poisson J, Wenkert E. Tetrahedron Lett. 1979; 5073
  • 37 Compound 180 was derivatized from natural (+)-catharanthine (33).
    • 38a Potier P, Langlois N, Langlois Y, Guéritte F. J. Chem. Soc., Chem. Commun. 1975; 670
    • 38b Langlois N, Guéritte F, Langlois Y, Potier P. J. Am. Chem. Soc. 1976; 98: 7017
    • 38c Mangeney P, Zo Andriamialisoa R, Langlois N, Langlois Y, Potier P. J. Am. Chem. Soc. 1979; 101: 2243
    • 38d Potier P. J. Nat. Prod. 1980; 43: 72
    • 39a Magnus P, Ladlow M, Elliott J, Kim CS. J. Chem. Soc., Chem. Commun. 1989; 518
    • 39b Magnus P, Stamford A, Ladlow M. J. Am. Chem. Soc. 1990; 112: 8212
  • 40 Pennanen S, Huhtikangas A. Photochem. Photobiol. 1990; 51: 515
    • 41a Kuehne ME, Zebovitz TC, Bornmann WG, Marko I. J. Org. Chem. 1987; 52: 4340
    • 41b Kuehne ME, Bornmann WG. J. Org. Chem. 1989; 54: 3407
    • 41c Kuehne ME, Matson PA, Bornmann WG. J. Org. Chem. 1991; 56: 513
  • 42 Gunić E, Tabaković I, Gašić MJ. J. Chem. Soc., Chem. Commun. 1993; 1496
    • 43a Duangteraprecha S, Hirata K, Morihara E, Nakae M, Katayama H, Honda M, Miyamoto K. J. Ferment. Bioeng. 1997; 83: 227
    • 43b Hirata K, Duangteraprecha S, Morihara E, Honda M, Akagi T, Nakae M, Katayama H, Miyamoto K. Biotechnol. Lett. 1997; 19: 53
    • 43c Hirata K, Akagi T, Duangteraprecha S, Honda M, Sakamoto Y, Nagase H, Miyamoto K. J. Biosci. Bioeng. 1999; 87: 781
  • 44 Schill G, Priester CU, Windhŏvel UF, Fritz H. Tetrahedron 1987; 43: 3765
  • 45 Yokoshima S, Ueda T, Kobayashi S, Sato A, Kuboyama T, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2002; 124: 2137
    • 46a Tokuyama H, Yamashita T, Reding MT, Kaburagi Y, Fukuyama T. J. Am. Chem. Soc. 1999; 121: 3791
    • 46b Kan T, Fukuyama T. Chem. Commun. 2004; 353
  • 47 Kuboyama T, Yokoshima S, Tokuyama H, Fukuyama T. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11966
  • 48 Vukovic J, Goodbody AE, Kutney JP, Misawa M. Tetrahedron 1988; 44: 325
    • 49a Langlois N, Potier P. J. Chem. Soc., Chem. Commun. 1978; 102
    • 49b Langlois N, Potier P. J. Chem. Soc., Chem. Commun. 1979; 582
    • 49c Kutney JP, Balsevich J, Bokelman GH, Hibino T, Honda T, Itoh I, Ratcliffe AH, Worth BR. Can. J. Chem. 1978; 56: 62
    • 50a Ishikawa H, Colby DA, Boger DL. J. Am. Chem. Soc. 2008; 130: 420
    • 50b Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
  • 51 Sears JE, Boger DL. Acc. Chem. Res. 2015; 48: 653
  • 52 Zhao G, Xie X, Sun H, Yuan Z, Zhong Z, Tang S, She X. Org. Lett. 2016; 18: 2447
  • 53 Giovanelli E, Moisan L, Comesse S, Leroux S, Rousseau B, Hellier P, Nicolas M, Doris E. Org. Biomol. Chem. 2013; 11: 5885
  • 54 Magolan J, Kerr MA. Org. Lett. 2006; 8: 4561
  • 55 Sapeta K, Kerr MA. Org. Lett. 2009; 11: 2081
  • 56 Reyes-Gutiérrez PE, Torres-Ochoa RO, Martínez R, Miranda LD. Org. Biomol. Chem. 2009; 7: 1388
  • 57 Torres-Ochoa R, Reyes-Gutiérrez PE, Martínez R. Eur. J. Org. Chem. 2014; 1: 48
  • 58 Kam T.-S, Sim K.-M. Nat. Prod. Lett. 1999; 13: 143
  • 59 For a review, see: Hageman HA. Org. React. 2011; 7: 198
  • 60 Büchi G, Manning RE, Monti SA. J. Am. Chem. Soc. 1964; 86: 4631