Synthesis 2020; 52(05): 673-687
DOI: 10.1055/s-0039-1690038
short review
© Georg Thieme Verlag Stuttgart · New York

Ethenesulfonyl Fluoride (ESF) and Its Derivatives in SuFEx Click Chemistry and More

Yan-Ping Meng
a   School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
,
Shi-Meng Wang
a   School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
b   School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China
,
Wan-Yin Fang
a   School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
b   School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China
,
Zhi-Zhong Xie
a   School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
,
Jing Leng
a   School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
b   School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China
,
Hamed Alsulami
c   Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
,
Hua-Li Qin
a   School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
b   School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (Grant No. 21772150), the Wuhan Applied Fundamental Research Plan of Wuhan Science and Technology Bureau (Grant No. 2017060201010216), the 111 Project (Grant No. B18038) and Wuhan University of Technology for the financial support.
Further Information

Publication History

Received: 23 October 2019

Accepted after revision: 18 November 2019

Publication Date:
09 December 2019 (online)


Abstract

The sulfur(VI) fluoride exchange reaction (SuFEx), developed by Sharpless and co-workers in 2014, is a new category of click reaction that creates molecular connections with absolute reliability and unprecedented efficiency through a sulfur(VI) hub. Ethenesulfonyl fluoride (ESF), as one of the most important sulfur(VI) hubs, exhibits extraordinary reactivity in SuFEx click chemistry and organic synthesis. This review summarizes the chemical properties and applications of ESF in click chemistry, organic chemistry, materials science, medicinal chemistry and in many other fields related to organic synthesis.

1 Introduction

2 Chemical Transformations of ESF

3 Chemical Transformations of 2-Arylethenesulfonyl Fluorides

4 Novel SuFEx Reagents Derived from ESF

5 Applications of ESF Derivatives in Medicinal Chemistry

6 Applications of ESF Derivatives in Materials Science

7 Conclusion

 
  • References

    • 1a Sharpless KB, Kolb HC. Book of Abstracts . 217th National Meeting of the American Chemical Society; Anaheim CA: Mar 21–25, 1999. American Chemical Society: Washington DC, 1999; ORGN-105, Accession Number 199:145537
    • 1b Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 2a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 2b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 3 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 4a Dong J, Sharpless KB, Kwisnek L, Oakdale JS, Fokin VV. Angew. Chem. Int. Ed. 2014; 53: 9466
    • 4b Li S, Wu P, Moses JE, Sharpless KB. Angew. Chem. Int. Ed. 2017; 56: 2903
    • 4c Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
    • 4d Liu Z, Li J, Li S, Li G, Sharpless KB, Wu P. J. Am. Chem. Soc. 2018; 140: 2919
    • 4e Zheng Q, Woehl JL, Kitamura S, Santos-Martins D, Smedley CJ, Li G, Forli S, Moses JE, Wolan DW, Sharpless KB. Proc. Natl. Acad. Sci. U.S.A. 2019; 116: 18808
    • 4f Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
    • 6a Rakesh KP, Wang S.-M, Leng J, Ravindar L, Asiri AM, Marwani HM, Qin H.-L. Anti-Cancer Agents Med. Chem. 2018; 18: 488
    • 6b Zhao C, Rakesh KP, Ravidar L, Fang W, Qin H.-L. Eur. J. Med. Chem. 2019; 162: 679
  • 7 Narayanan A, Jones LH. Chem. Sci. 2015; 6: 2650
    • 8a Gold AM. Methods Enzymol. 1967; 11: 706
    • 8b Fahrney D, Gold AM. J. Am. Chem. Soc. 1963; 85: 997
  • 9 Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC, Jones LH, Burlingame AL, Taunton J. J. Am. Chem. Soc. 2017; 139: 680
  • 10 Brouwer AJ, Álvarez NH, Ciaffoni A, van de Langemheen H, Liskamp RM. J. Bioorg. Med. Chem. 2016; 24: 3429
    • 11a Nielsen MK, Ugaz CR, Li W, Doyle AG. J. Am. Chem. Soc. 2015; 137: 9571
    • 11b Inkster JA. H, Liu K, Ait-Mohand S, Schaffer P, Guérin B, Ruth TJ, Storr T. Chem. Eur. J. 2012; 18: 11079
    • 11c Yatvin J, Brooks K, Locklin J. Angew. Chem. Int. Ed. 2015; 54: 13370
    • 11d Yatvin J, Brooks K, Locklin J. Chem. Eur. J. 2016; 22: 16348
    • 11e Li S, Beringer LT, Chen S, Averick S. Polymer 2015; 78: 37
  • 12 Hedrick RM. US Patent 2653973, 1953
  • 13 Krutak JJ, Burpitt RD. US Patent 3952029, 1976
  • 14 Fujigaya T, Sibasaki Y, Ando S, Kishimura S, Endo M, Sasago M, Ueda M. Chem. Mater. 2003; 15: 1512
  • 15 Vries L. US Patent 4269790, 1981
    • 16a Jimonet P, Audiau F, Barreau M, Blanchard J.-C, Boireau A, Bour Y, Coleno M.-A, Doble A, Doerflinger G, Do Huu C, Donat M.-H, Duchesne JM, Ganil P, Gueremy C, Honoré E, Just B, Kerphirique R, Gontier S, Hubert P, Laduron PM, Le Blevec J, Meunier M, Miquet J.-M, Nemecek C, Pasquet M, Piot O, Pratt J, Rataud J, Reibaud M, Stutzmann J.-M, Mignani S. J. Med. Chem. 1999; 42: 2828
    • 16b Kreimeyer A, Laube B, Sturgess M, Goeldner M, Foucaud B. J. Med. Chem. 1999; 42: 4394
    • 16c Aguilar B, Amissah F, Duverna R, Lamango NS. Curr. Cancer Drug Targets 2011; 11: 752
  • 17 Krutak JJ, Burpitt RD, Moore WH, Hyatt JA. J. Org. Chem. 1979; 44: 3847
  • 18 Zheng Q, Dong J, Sharpless KB. J. Org. Chem. 2016; 81: 11360
  • 19 Chen Q, Mayer P, Mayr H. Angew. Chem. Int. Ed. 2016; 55: 12664
  • 20 Daeniker H, Druey J. Helv. Chim. Acta 1962; 45: 1972
  • 21 Chanet-Ray J, Vessiere R, Zéroual A. Heterocycles 1987; 26: 101
  • 22 Mykhailiuk PK. Chem. Eur. J. 2014; 20: 4942
  • 23 Slobodyanyuk EY, Artamonov OS, Shishkin OV, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
  • 24 Mykhalchuk VL, Yarmolchuk VS, Doroschuk RO, Tolmachev AA, Grygorenko OO. Eur. J. Org. Chem. 2018; 2870
  • 25 Jangra H, Chen Q, Fuks E, Zenz I, Mayer P, Ofial AR, Zipse H, Mayr H. J. Am. Chem. Soc. 2018; 140: 16758
  • 26 Skalenko YA, Druzhenko TV, Denisenko AV, Samoilenko MV, Dacenko OP, Trofymchuk SA, Grygorenko OO, Tolmachev AA, Mykhailiuk PK. J. Org. Chem. 2018; 83: 6275
  • 27 Qin H.-L, Zheng Q, Bare GA. L, Wu P, Sharpless KB. Angew. Chem. Int. Ed. 2016; 55: 14155
  • 28 Chinthakindi PK, Govender KB, Kumar AS, Kruger HG, Govender T, Naicker T, Arvidsson PI. Org. Lett. 2017; 19: 480
  • 29 Zha G.-F, Bare GA. L, Leng J, Shang Z.-P, Luo Z, Qin H.-L. Adv. Synth. Catal. 2017; 359: 3237
  • 30 Zha G.-F, Zheng Q, Leng J, Wu P, Qin H.-L, Sharpless KB. Angew. Chem. Int. Ed. 2017; 56: 4849
  • 31 Wang S.-M, Li C, Leng J, Bukhari SN. A, Qin H.-L. Org. Chem. Front. 2018; 5: 1411
  • 32 Wang S.-M, Moku B, Leng J, Qin H.-L. Eur. J. Org. Chem. 2018; 4407
  • 33 Li C, Wang S.-M, Qin H.-L. Org. Lett. 2018; 20: 4699
  • 34 Ncube G, Huestis MP. Organometallics 2019; 38: 76
  • 35 Li C, Qin H.-L. Org. Lett. 2019; 21: 4495
  • 36 Liu M, Yang P, Karunananda MK, Wang Y, Liu P, Engle KM. J. Am. Chem. Soc. 2018; 140: 5805
  • 37 Romine AM, Yang KS, Karunananda MK, Chen JS, Engle KM. ACS Catal. 2019; 9: 7626
  • 38 Dou Y, Liu J, Jiang J, Zhu Q. Chem. Eur. J. 2019; 25: 6896
  • 39 Park H, Li Y, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 58: 11424
  • 40 Chen X.-Y, Wu Y, Zhou J, Wang P, Yu J.-Q. Org. Lett. 2019; 21: 1426
  • 41 Xu R, Xu T, Yang M, Cao T, Liao S. Nat. Commun. 2019; 10: 3752
  • 42 Truce WE, Hoerger FD. J. Am. Chem. Soc. 1954; 76: 3230
  • 43 Ungureanu A, Levens A, Candish L, Lupton DW. Angew. Chem. Int. Ed. 2015; 54: 11780
  • 44 Chen X, Zha G.-F, Bare GA. L, Leng J, Wang S.-M, Qin H.-L. Adv. Synth. Catal. 2017; 359: 3254
  • 45 Xu Y, Zhang Z, Jiang X, Chen X, Wang Z, Alsulami H, Qin H.-L, Tang W. Eur. J. Med. Chem. 2019; 181 DOI: in press; 10.1016/j.ejmech.2019.111598.
  • 46 Chen X, Zha G.-F, Fang W.-Y, Rakesh KP, Qin H.-L. Chem. Commun. 2018; 54: 9011
  • 47 Khumalo MF, Akpan ED, Chinthakindi PK, Brasil EM, Rajbongshi KK, Makatini MM, Govender T, Kruger HG, Naicker T, Arvidsson PI. RSC Adv. 2018; 8: 37503
  • 48 Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Org. Biomol. Chem. 2019; 17: 3451
  • 49 Li X.-R, Chen HJ, Wang W, Ma M, Chen Y, Li Y, Pullarkat SA, Leung P.-H. J. Organomet. Chem. 2019; 899 DOI: in press; 10.1016/j.jorganchem.2019.120912.
  • 50 Liu H, Moku B, Li F, Ran J, Han J, Long S, Zha G.-F, Qin H.-L. Adv. Synth. Catal. 2019; 361: 4596
  • 51 Moku B, Fang W.-Y, Leng J, Kantchev EA. B, Qin H.-L. ACS Catal. 2019; 9: 10477
  • 52 Huang Y.-M, Wang S.-M, Leng J, Moku B, Zhao C, Alharbi NS, Qin H.-L. Eur. J. Org. Chem. 2019; 4597
  • 53 Leng J, Qin H.-L. Chem. Commun. 2018; 54: 4477
  • 54 Leng J, Alharbi NS, Qin H.-L. Eur. J. Org. Chem. 2019; 6101
  • 55 Smedley CJ, Giel M.-C, Molino A, Barrow AS, Wilson DJ. D, Moses JE. Chem. Commun. 2018; 54: 6020
  • 56 Thomas J, Fokin VV. Org. Lett. 2018; 20: 3749
  • 57 Zhang X, Moku B, Leng J, Rakesh KP, Qin H.-L. Eur. J. Org. Chem. 2019; 1763
  • 58 Shishido Y, Tomoike F, Kimura Y, Kuwata K, Yano T, Fukui K, Fujikawa H, Sekido Y, Murakami-Tonami Y, Kameda T, Shuto S, Abe H. Chem. Commun. 2017; 53: 11138
  • 59 Zhang B, Pascali G, Wyatt N, Matesic L, Klenner MA, Sia TR, Guastella AJ, Massi M, Robinson AJ, Fraser BH. J. Labelled Compd. Radiopharm. 2018; 61: 847
  • 60 Zhang B, Fraser BH, Klenner MA, Chen Z, Liang SH, Massi M, Robinson AJ, Pascali G. Chem. Eur. J. 2019; 25: 7613
  • 61 Chen X, Zha G.-F, Wang JQ, Liu X.-H. J. Enzyme Inhib. Med. Chem. 2018; 33: 1266
  • 62 Zha G.-F, Wang S.-M, Rakesh KP, Bukhari SN. A, Manukumar HM, Vivek HK, Mallesha N, Qin H.-L. Eur. J. Med. Chem. 2019; 162: 364
  • 63 Jiang Y, Rakesh KP, Alharbi NS, Vivek HK, Manukumar HM, Mohammed YH. E, Qin H.-L. Bioorg. Chem. 2019; 89 DOI: in press; 10.1016/j.bioorg.2019.103015.
  • 64 Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Nat. Mater. 2019; 18: 384
  • 65 Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. Angew. Chem. Int. Ed. 2017; 56: 11203
  • 66 Gahtory D, Sen R, Pujari S, Li S, Zheng Q, Moses JE, Sharpless KB, Zuilhof H. Chem. Eur. J. 2018; 24: 10550