Synlett 2020; 31(09): 823-828
DOI: 10.1055/s-0039-1690773
synpacts
© Georg Thieme Verlag Stuttgart · New York

Organic-Photoacid-Catalyzed Glycosylation

Juncheng Li
,
Gaoyuan Zhao
,
Ting Wang
Department of Chemistry, University at Albany, State University of New York, 1400 Washington ­Avenue, Albany, New York 12222, USA   Email: twang3@albany.edu
› Author Affiliations
Financial support was provided by the State University of New York at Albany.
Further Information

Publication History

Received: 12 November 2019

Accepted after revision: 29 November 2019

Publication Date:
10 January 2020 (online)


Abstract

Photoacids are molecules that become more acidic upon absorption of light. They are widely utilized in a variety of fields, such as organic synthesis, molecular switching agents, and photodynamic therapy. Currently, the activity of most photoacids is induced by UV light, which limits their applications by the synthetic community. In this ­Synpacts article, we highlight our recent development of visible-light-­induced photoacids and their application in glycosylation reactions.

1 Introduction

2 Visible-Light-Induced Photoacids

3 Synthesis of 2-Deoxyglycosides by Visible-Light-Induced Photoacid Catalysis

4 Conclusion

 
  • References

  • 1 Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
  • 2 Monaco M, Pupo G, List B. Synlett 2016; 27: 1027
  • 3 Bolm C, Rantanen T, Schiffers I, Zani L. Angew. Chem. Int. Ed. 2005; 44: 1758
    • 5a Liao Y. Acc. Chem. Res. 2017; 50: 1956
    • 5b Ivan MG, Scaiano JC. Photoimaging and Lithographic Processes in Polymers. In Photochemistry and Photophysics of Polymer Materials. Allen NS. John Wiley & Sons; Hoboken: 2010
    • 6a Ireland JF, Wyatt PA. H. Adv. Phys. Org. Chem. 1976; 12: 131
    • 6b Shizuka H. Acc. Chem. Res. 1985; 18: 141
    • 7a Yi H, Niu L, Wang S, Liu Y, Singh AK, Lei A. Org. Lett. 2017; 19: 122
    • 7b Oates RP, Jones PB. J. Org. Chem. 2008; 73: 4743
    • 7c Shi Z, Peng P, Strohecker D, Liao Y. J. Am. Chem. Soc. 2011; 133: 14699
    • 7d Serafinowski PJ, Garland PB. J. Am. Chem. Soc. 2003; 125: 962
    • 7e Iwata R, Uda K, Takahashi D, Toshima K. Chem. Commun. 2014; 50: 10695
    • 7f Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190
    • 7g Das A, Banerjee T, Hanson K. Chem. Commun. 2016; 52: 1350
    • 7h Das A, Ayad S, Hanson K. Org. Lett. 2016; 18: 5416
    • 7i Yan D.-M, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 378
    • 7j Strada A, Fredditori M, Zanoni G, Protti S. Molecules 2019; 24: 1318
    • 7k Salem ZM, Saway J, Badillo JJ. Org. Lett. 2019; 21: 8528
  • 8 Tatum LA, Foy JT, Aprahamian I. J. Am. Chem. Soc. 2014; 136: 17438
  • 9 Yue X, Yanez CO, Yao S, Belfield KD. J. Am. Chem. Soc. 2013; 135: 2112
  • 10 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
  • 11 Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L, Nicewicz DA, DiRocco DA. J. Org. Chem. 2016; 81: 7244
  • 12 Zhao G, Wang T. Angew. Chem. Int. Ed. 2018; 57: 6120
  • 13 Kirschning A, Bechthold AF. W, Rohr J. Top. Curr. Chem. 1997; 188: 1
  • 14 Daniel PT, Koert U, Schuppan J. Angew. Chem. Int. Ed. 2006; 45: 872
  • 15 Weymouth-Wilson AC. Nat. Prod. Rep. 1997; 14: 99
  • 16 McCranie EK, Bachmann BO. Nat. Prod. Rep. 2014; 31: 1026
    • 17a Marzabadi CH, Franck RW. Tetrahedron 2000; 56: 8385
    • 17b Hou DJ, Lowary TL. Carbohydr. Res. 2009; 344: 1911
    • 17c Borovika A, Nagorny P. J. Carbohydr. Chem. 2012; 31: 255
    • 17d Medina S, Galan MC. Carbohydr. Chem. 2015; 41: 59
    • 17e Zeng J, Xu Y, Wang H, Meng L, Wan Q. Sci. China Chem. 2017; 60: 1162
    • 17f Benito-Alifonso B, Galan MC. Bronsted and Lewis Acid Catalyzed Glycosylation. In Selective Glycosylations: Synthetic Methods and Catalysts. Bennet CS. Wiley-VCH; Weinheim: 2017
    • 17g Williams R, Galan MC. Eur. J. Org. Chem. 2017; 6247
    • 17h Bennett CS, Galan MC. Chem. Rev. 2018; 118: 7931
    • 18a Thiem J, Gerken M. J. Org. Chem. 1985; 50: 954
    • 18b Wiesner K, Tsai TY. R, Jin H. Helv. Chim. Acta 1985; 68: 300
    • 18c Nicolaou KC, Ladduwahetty T, Randall JL, Chucholowski A. J. Am. Chem. Soc. 1986; 108: 2466
    • 18d Ito Y, Ogawa T. Tetrahedron Lett. 1987; 28: 2723
    • 18e Preuss R, Schmidt RR. Synthesis 1988; 694
    • 18f Perez M, Beau J.-M. Tetrahedron Lett. 1989; 30: 75
    • 18g Gervay J, Danishefsky SJ. J. Org. Chem. 1991; 56: 5448
    • 18h Grewal G, Kaila N, Franck RW. J. Org. Chem. 1992; 57: 2084
    • 18i Roush WR, Sebesta DP, Bennett CE. Tetrahedron 1997; 53: 8825
    • 18j Roush WR, Sebesta DP, James RA. Tetrahedron 1997; 53: 8837
    • 18k Franck RW, Marzabadi CH. J. Org. Chem. 1998; 63: 2197
    • 18l Roush WR, Bennett CE. J. Am. Chem. Soc. 1999; 121: 3541
    • 18m Roush WR, Gung BW, Bennett CE. Org. Lett. 1999; 1: 891
    • 18n Yu B, Wang P. Org. Lett. 2002; 4: 1919
    • 18o Blanchard N, Roush WR. Org. Lett. 2003; 5: 81
    • 18p Bucher C, Gilmour R. Angew. Chem. Int. Ed. 2010; 49: 8724
    • 18q Meyerhoefer TJ, Kershaw S, Caliendo N, Eltayeb S, Hanawa-Romero E, Bykovskaya P, Huang V, Marzabadi CH, De Castro M. Eur. J. Org. Chem. 2015; 2457
    • 19a Baryal KN, Zhu D, Li X, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 8012
    • 19b Kaneko M, Herzon SB. Org. Lett. 2014; 16: 2776
    • 19c Pradhan TK, Lin CC, Mong KK. T. Org. Lett. 2014; 16: 1474
    • 19d Issa JP, Bennett CS. J. Am. Chem. Soc. 2014; 136: 5740
    • 19e Wang H, Tao J, Cai X, Chen W, Zhao Y, Xu Y, Yao W, Zeng J, Wan Q. Chem. Eur. J. 2014; 20: 17319
    • 19f Song W, Zhao Y, Lynch JC, Kim H, Tang W. Chem. Commun. 2015; 51: 17475
    • 19g Das S, Pekel D, Neudorfl JM, Berkessel A. Angew. Chem. Int. Ed. 2015; 54: 12479
    • 19h Nogueira JM, Bylsma M, Bright DK, Bennett CS. Angew. Chem. Int. Ed. 2016; 55: 10088
    • 19i Tanaka H, Yoshizawa A, Takahashi T. Angew. Chem. Int. Ed. 2007; 46: 2505
    • 19j Verma VP, Wang CC. Chem. Eur. J. 2013; 19: 846
    • 19k Zhu D, Adhikara S, Baryal KN, Abdullah BN, Zhu J. J. Carbohydr. Chem. 2014; 33: 438
    • 19l Liu D, Sarrafpour S, Guo W, Goulart B, Bennett CS. J. Carbohydr. Chem. 2014; 33: 423
    • 19m Zhu D, Baryal KN, Adhikari S, Zhu J. J. Am. Chem. Soc. 2014; 136: 3172
    • 19n Beale TM, Moon PJ, Taylor MS. Org. Lett. 2014; 16: 3604

      For recent examples, see:
    • 20a Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152
    • 20b Balmond EI, Benito-Alifonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC. Angew. Chem. Int. Ed. 2014; 53: 8190
    • 20c Sau A, Williams R, Palo-Nieto C, Franconetti A, Medina S, Galan MC. Angew. Chem. Int. Ed. 2017; 56: 3640
    • 20d Palo-Nieto C, Sau A, Galan MC. J. Am. Chem. Soc. 2017; 139: 14041
    • 20e Sherry BD, Loy RN, Toste FD. J. Am. Chem. Soc. 2004; 126: 4510
    • 20f Sau A, Palo-Nieto C, Galan MC. J. Org. Chem. 2019; 84: 2415
    • 20g Wang J, Deng C, Zhang Q, Chai Y. Org. Lett. 2019; 21: 1103
    • 20h Bradshaw GA, Colgan AC, Allen NP, Pongener I, Boland MB, Ortin Y, McGarrigle EM. Chem. Sci. 2019; 10: 508
    • 20i Tatina MB, Moussa Z, Xia M, Judeh ZM. A. Chem. Commun. 2019; 55: 12204

      For reviews of photoinduced glycosylations, see:
    • 21a Sangwan R, Mandal PK. RSC Adv. 2017; 7: 26256
    • 21b Wang H, Wu P, Zhao X, Zeng J, Wan Q. Acta Chim. Sinica 2019; 77: 231

    • For recent selective examples of visible-light-mediated glycosylations, see:
    • 21c Mao R.-Z, Xiong D.-C, Guo F, Li Q, Duan J, Ye X.-S. Org. Chem. Front. 2016; 3: 737
    • 21d Yu Y, Xiong D.-C, Mao R.-Z, Ye X.-S. J. Org. Chem. 2016; 81: 7134
    • 21e Andrews RS, Becker JJ, Gagne MR. Angew. Chem. Int. Ed. 2010; 49: 7274
    • 21f Andrews RS, Becker JJ, Gagne MR. Angew. Chem. Int. Ed. 2012; 51: 4140
    • 21g Spell ML, Deveaux K, Bresnahan CG, Bernard BL, Sheffield W, Kumar R, Ragains JR. Angew. Chem. Int. Ed. 2016; 55: 6515
    • 21h Spell M, Wang X, Wahba AE, Connor E, Ragains J. Carbohydr. Res. 2013; 369: 42
    • 21i Wen P, Crich D. Org. Lett. 2017; 19: 2402
    • 21j Wever WJ, Cinelli MA, Bowers AA. Org. Lett. 2013; 15: 30
    • 21k Ye H, Xiao C, Zhou Q, Wang P, Xiao W.-J. J. Org. Chem. 2018; 83: 13325