Synthesis 2020; 52(12): 1751-1761
DOI: 10.1055/s-0039-1690868
feature
© Georg Thieme Verlag Stuttgart · New York

Automated Electrochemical Selenenylations

Nasser Amri
,
Thomas Wirth
The support from Cardiff University and from the Chemistry Department, Jazan University, Saudi Arabia, is appreciated.
Further Information

Publication History

Received: 28 January 2020

Accepted after revision: 09 March 2020

Publication Date:
31 March 2020 (online)


Abstract

Integrated electrochemical reactors in automated flow systems were utilised for selenenylation reactions. The automation allowed multiple electrochemical reactions of a programmed sequence to be performed in a fully autonomous way. Many functionalised selenenylated­ products were synthesised in short reaction times in good to high yields.

Supporting Information

 
  • References

    • 1a Alcácer V, Cruz-Machado V. Eng. Sci. Technol. Int. J. 2019; 22: 899
    • 1b Fitzpatrick DE, Battilocchio C, Ley SV. ACS Cent. Sci. 2016; 2: 131
    • 1c Kreimeyer A, Eckes P, Fischer C, Lauke H, Schuhmacher P. Angew. Chem. Int. Ed. 2015; 54: 3178
    • 1d Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ. Angew. Chem. Int. Ed. 2015; 54: 10122
    • 1e Prieto G, Schüth F. Angew. Chem. Int. Ed. 2015; 54: 3222
    • 1f Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
    • 2a Science of Synthesis: Flow Chemistry . Jamison TF, Koch G. Thieme; Stuttgart: 2018
    • 2b Microreactors in Organic Synthesis and Catalysis. Wirth T. Wiley-VCH; Weinheim: 2013
    • 2c Yoshida J. Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley-VCH; Weinheim: 2008
    • 3a Jing Q, Moeller KD. Acc. Chem. Res. 2020; 53: 135
    • 3b Folgueiras Amador AA, Wirth T. In Science of Synthesis: Flow Chemistry . Jamison TF, Koch G. Thieme; Stuttgart: 2018: 147
    • 3c Pletcher D, Green RA, Brown RC. D. Chem. Rev. 2018; 118: 4573
    • 3d Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
    • 3e Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 4a Elsherbini M, Wirth T. Acc. Chem. Res. 2019; 52: 3287
    • 4b Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Angew. Chem. Int. Ed. 2017; 56: 15446
    • 4c Amri N, Skilton RA, Guthrie D, Wirth T. Synlett 2019; 30: 1183
  • 5 https://www.vapourtec.com/products/flow-reactors/ion-electrochemical-reactor-features/ (accessed January 2020).
    • 6a Shaabani S, Xu R, Ahmadianmoghaddam M, Gao L, Stahorsky M, Olechno J, Ellson R, Kossenjans M, Helan V, Dömling A. Green Chem. 2019; 21: 225
    • 6b Trobe M, Burke MD. Angew. Chem. Int. Ed. 2018; 57: 4192
    • 6c Panza M, Pistorio SG, Stine KJ, Demchenko AV. Chem. Rev. 2018; 118: 8105
    • 6d Mijalis AJ, Thomas DA, Simon MD, Adamo A, Beaumont R, Jensen KF, Pentelute BL. Nat. Chem. Biol. 2017; 13: 464
    • 6e Reizman BJ, Jensen KF. Acc. Chem. Res. 2016; 49: 1786
    • 6f Yoshida J, Kim H, Nagaki A. ChemSusChem 2011; 4: 331
    • 6g Merrifield RB, Stewart JM, Jernberg N. Anal. Chem. 1966; 38: 1905
    • 7a Singh FV, Wirth T. Catal. Sci. Technol. 2019; 9: 1073
    • 7b Singh FV, Wirth T. In Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments . Jain VK, Priyadarsini KI. The Royal Society of Chemistry; London: 2018: 77
    • 7c Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 7d Organoselenium Chemistry . Wirth T. Springer; Berlin: 2000
    • 7e Back TG. Organoselenium Chemistry: A Practical Approach . Oxford University Press; Oxford: 1999
  • 8 Niyomura O, Cox M, Wirth T. Synlett 2006; 251
    • 9a Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 9b Moeller KD. Chem. Rev. 2018; 118: 4817
    • 9c Francke R, Schille B, Roemelt M. Chem. Rev. 2018; 118: 4631
    • 9d Yoshida J, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
    • 9e Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Chem. Rev. 2018; 118: 4731
    • 9f Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
    • 10a Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 10b Sun L, Yuan Y, Yao M, Wang H, Wang D, Gao M, Chen YH, Lei A. Org. Lett. 2019; 21: 1297
    • 10c Chen J, Mei L, Wang H, Hu L, Sun X, Shi J, Li Q. ChemistryOpen 2019; 7: 1230
    • 10d Wilken M, Ortgies S, Breder A, Siewert I. ACS Catal. 2018; 8: 10901
    • 11a Folgueiras-Amador AA, Qian X.-Y, Xu H.-C, Wirth T. Chem. Eur. J. 2018; 24: 487
    • 11b Laudadio G, Straathof NJ. W, Lanting MD, Knoops B, Hessel V, Noël T. Green Chem. 2017; 19: 4061
  • 12 Kaye A, Neidle S, Reese CB. Tetrahedron Lett. 1988; 29: 2711
  • 13 Meirinho AG, Pereira VF, Martins GM, Saba S, Rafique J, Braga AL, Mendes SR. Eur. J. Org. Chem. 2019; 6465
  • 14 CCDC-1980248 (21) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 Perin G, Santoni P, Barcellos AM, Nobre PC, Jacob RG, Lenardão EJ, Santi C. Eur. J. Org. Chem. 2018; 1224
  • 16 Yu C, Shi H, Yan J. ARKIVOC 2015; 266
  • 17 Vieira AA, Azeredo JB, Godoi M, Santi C, Da Silva Júnior EN, Braga AL. J. Org. Chem. 2015; 80: 2120
  • 18 Bosman C, D’Annibale A, Resta S, Trogolo C. Tetrahedron Lett. 1994; 35: 6525
  • 19 Tiecco M, Testaferri L, Tingoli M, Chianelli D, Bartoli D. Tetrahedron 1988; 44: 2261
  • 20 Conner ES, Crocker KE, Fernando RG, Fronczek FR, Stanley GG, Ragains JR. Org. Lett. 2013; 15: 5558
  • 21 Kostić M, Verdía P, Fernández-Stefanuto V, Puchta R, Tojo E. J. Phys. Org. Chem. 2019; 32: 1
  • 22 Vásquez-Céspedes S, Ferry A, Candish L, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
  • 23 Denmark SE, Collins WR. Org. Lett. 2007; 9: 3801
  • 24 Nicolaou KC, Seitz SP, Sipio WJ, Blount JF. J. Am. Chem. Soc. 1979; 101: 3884
  • 25 Zhang QB, Yuan PF, Kai LL, Liu K, Ban YL, Wang XY, Wu LZ, Liu Q. Org. Lett. 2019; 21: 885
  • 26 Ni Y, Zuo H, Li Y, Wu Y, Zhong F. Org. Lett. 2018; 20: 4350