Synthesis 2020; 52(04): 504-520
DOI: 10.1055/s-0039-1691542
short review
© Georg Thieme Verlag Stuttgart · New York

Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts

Further Information

Publication History

Received: 24 September 2019

Accepted after revision: 10 December 2019

Publication Date:
02 January 2020 (online)


Published as part of the Bürgenstock Special Section 2019 Future Stars in Organic Chemistry

Abstract

Based on the ever-increasing demand for optically pure compounds, the development of efficient methods to produce such products is very important. Homogeneous asymmetric catalysis occupies a prominent position in the ranking of chemical transformations, with transition metals coordinated to chiral ligands being applied extensively for this purpose. However, heterogeneous catalysts have the ability to further extend the field of asymmetric transformations, because of their beneficial properties such as high stability, ease of separation and regeneration, and the possibility to apply them in continuous processes. The main challenge is to find potential synthetic routes that can provide a chemically and thermally stable heterogeneous catalyst having the necessary chiral information, whilst keeping the catalytic activity and enantioselectivity equally high (or even higher) than the corresponding homogeneous counterpart. Within this short review, the most relevant immobilization modes and preparative strategies depending on the support material used are summarized. From the reaction scope viewpoint, metal catalysts supported on the various solid materials studied in (asymmetric) transfer hydrogenation of carbonyl compounds are selected and represent the main focus of the second part of this overview.

1 Introduction

2 Synthesis of Chiral Heterogeneous Catalysts

2.1 Immobilization of Homogeneous Asymmetric Catalysts

2.1.1 Immobilization on Inorganic Supports

2.1.2 Immobilization on Organic Polymers as Supports

2.1.3 Immobilization on Dendrimer-Type Materials as Supports

2.1.4 Self-Supported Chiral Catalysts: Coordination Polymers

2.1.5 Immobilization Using Non-Conventional Media

2.2 Chirally Modified Metal Surfaces for Heterogeneous Asymmetric Catalysis

3 Examples of Transfer Hydrogenation on Heterogeneous Catalysts

3.1 Silicon-Immobilized Catalysts

3.2 Carbon-Material-Immobilized Catalysts

3.3 Polymer-Immobilized Catalysts

3.4 Magnetic-Nanoparticle-Immobilized Catalysts

4 Conclusions

 
  • References

  • 1 Wang Z, Ding K, Uozumi Y. In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 1, 4
    • 2a Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 2b Baráth E. Catalysts 2018; 8: 671
  • 3 Cheng T, Zhao Q, Zhang D, Liu G. Green Chem. 2015; 17: 2100
    • 4a Bhattacharjee S, Khan MI, Li X, Zhu Q.-L, Wu X.-T. Catalysts 2018; 8: 120
    • 4b Mouarrawis V, Plessius R, van der Vlugt JI, Reek JN. H. Front. Chem. 2018; 6: 623
  • 5 Wang Q, Astruc D. Chem. Rev. 2019; 119 DOI: in press; 10.1021/acs.chemrev.9b00223.
  • 6 Altava B, Burguete MI, García-Verdugo E, Luis SV. Chem. Soc. Rev. 2018; 47: 2722
  • 7 Baig RB. N, Nadagouda MN, Varma RS. Coord. Chem. Rev. 2015; 287: 137
    • 8a McMorn P, Hutchings GJ. Chem. Soc. Rev. 2004; 33: 108
    • 8b Song CE, Lee SG. Chem. Rev. 2002; 102: 3495
    • 8c Corma A, Garcia H. Adv. Synth. Catal. 2006; 348: 1391
    • 8d De Vos DE, Dams M, Sels BF, Jacobs PA. Chem. Rev. 2002; 102: 3615
    • 8e Song CE, Kim DH, Choi DS. Eur. J. Inorg. Chem. 2006; 2927
    • 8f Li C, Zhang H, Jiang D, Yang Q. Chem. Commun. 2007; 547
    • 9a Leadbeater NE, Marco M. Chem. Rev. 2002; 102: 3217
    • 9b Bräse S, Leuterwasser F, Ziegert RE. Adv. Synth. Catal. 2003; 345: 869
    • 9c Mastrorilli P, Nobile CF. Coord. Chem. Rev. 2004; 248: 377
    • 9d Dioos BM. L, Vankelecom IF. J, Jacobs PA. Adv. Synth. Catal. 2006; 348: 1413
  • 11 Bergreiter DE. Chem. Rev. 2002; 102: 3345
    • 12a Astruc D, Chardac F. Chem. Rev. 2001; 101: 2991
    • 12b Mery D, Astruc D. Coord. Chem. Rev. 2006; 250: 1965
    • 12c Helms B, Frechet JM. J. Adv. Synth. Catal. 2006; 348: 1125
    • 12d Berger A, Gebbink RJ. M. K, van Koten G. Top. Organomet. Chem. 2006; 20: 1
    • 12e Ribaudo F, van Leeuwen PW. N. M, Reek JN. H. Top. Organomet. Chem. 2006; 20: 39
    • 12f Wang D, Astruc D. Coord. Chem. Rev. 2013; 257: 2317
    • 13a Fan QH, Li YM, Chan AS. C. Chem. Rev. 2002; 102: 3385
    • 13b Kassube JK, Gade LH. Top. Organomet. Chem. 2006; 20: 61
    • 13c Brunner H. J. Organomet. Chem. 1995; 500: 39
  • 14 Fan Q.-H, Deng G.-J, Feng Y, He Y.-M. Enantioselective Catalysis Using Dendrimer Supports . In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 4, 131
    • 15a Heitbaum M, Glorius F, Escher I. Angew. Chem. Int. Ed. 2006; 45: 4732
    • 15b Ding K, Wang Z. Homochiral Metal-Organic Coordination Polymers for Heterogeneous Enantioselective Catalysis: Self-Supporting Strategy. In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 9, 323
    • 16a Wu X, Han X, Zhang J, Jiang H, Hou B, Liu Y, Cui Y. Organometallics 2019; 38: 3474
    • 16b Xu W, Thapa KB, Ju Q, Fang Z, Huang W. Coord. Chem. Rev. 2018; 373: 199
    • 17a Cheetham AK, Rao CN. R, Feller RK. Chem. Commun. 2006; 4780
    • 17b Forster PM, Cheetham AK. Top. Catal. 2003; 24: 79
    • 17c Hagrman PJ, Hagrman D, Zubieta J. Angew. Chem. Int. Ed. 1999; 38: 2638
    • 18a Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Nature 2003; 423: 705
    • 18b Robin AY, Fromm KM. Coord. Chem. Rev. 2006; 250: 2127
    • 19a Li CJ. Chem. Rev. 2005; 105: 3095
    • 19b Li CJ, Chen L. Chem. Soc. Rev. 2006; 35: 68
    • 19c Cornils B. Recent Developments in Homogeneous Catalysis . In Applied Homogeneous Catalysis with Organometallic Compounds, 1st ed., Vol. 1. Cornils B, Herrmann WA. Wiley-VCH; Weinheim: 1996. Chap. 3, 577
  • 20 Uozumi Y. Heterogeneous Asymmetric Catalysis in Aqueous Media. In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 6, 209
  • 21 Horváth IT, Rábai J. Science 1994; 266: 72
    • 22a Barthel-Rosa LP, Gladysz JA. Coord. Chem. Rev. 1999; 190-192: 587
    • 22b Horváth IT. Acc. Chem. Res. 1998; 31: 641
    • 22c Pozzi G. Enantioselective Fluorous Catalysis . In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 5, 181
  • 23 Parshall GW. J. Am. Chem. Soc. 1972; 94: 8716
  • 24 Chauvin Y, Mussmann L, Olivier H. Angew. Chem. Int. Ed. 1995; 34: 2698
    • 25a Song CE. Chem. Commun. 2004; 1033
    • 25b Parvulescu VI, Hardcare C. Chem. Rev. 2007; 107: 2615
    • 26a Pozzi G, Shepperson I. Coord. Chem. Rev. 2003; 242: 115
    • 26b Welton T. Chem. Rev. 1999; 99: 2071
    • 26c Welton T. Coord. Chem. Rev. 2004; 248: 2459
    • 26d Miao W, Chan TH. Acc. Chem. Res. 2006; 39: 897
    • 26e Muzart J. Adv. Synth. Catal. 2006; 348: 275
    • 26f Skoda-Földes R. Molecules 2014; 19: 8840
    • 26g Deng Y, Shi F, Zhang Q. Catalytic Reactions in or by Room-Temperature Ionic Liquids: Bridging the Gap between Homogeneous and Heterogeneous Catalysis. In Bridging Heterogeneous and Homogeneous Catalysis, 1st ed. Li C, Liu Y. Wiley-VCH; Weinheim: 2014. Chap. 2, 21
  • 27 Smith EL, Abbott AP, Ryder KS. Chem. Rev. 2014; 114: 11060
    • 28a Imperato G, Höger S, Lenoir D, König B. Green Chem. 2006; 8: 1051
    • 28b Imperato G, Vasold R, König B. Adv. Synth. Catal. 2006; 348: 2243
    • 28c Ilgen F, König B. Green Chem. 2009; 11: 848
    • 28d Marset X, Khoshnood A, Sotorrios L, Gómez-Bengoa E, Alonso DA, Ramón DJ. ChemCatChem 2017; 9: 1269
    • 28e Marset X, De Gea S, Guillena G, Ramón DJ. ACS Sustainable Chem. Eng. 2018; 6: 5743
    • 28f Dilauro G, Garcia SM, Tagarelli D, Vitale P, Perna FM, Capriati V. ChemSusChem 2018; 11: 3495
    • 28g Paris J, Telzerow A, Ríos-Lombardía N, Steiner K, Schwab H, Morís F, Gröger H, González-Sabín J. ACS Sustainable Chem. Eng. 2019; 7: 5486
    • 28h Saavedra B, Pérez JM, Rodríguez-Álvarez MJ, García-Álvarez J, Ramón DJ. Green Chem. 2018; 20: 2151
    • 28i Saavedra B, González-Gallardo N, Meli A, Ramón DJ. Adv. Synth. Catal. 2019; 361: 3868
    • 28j Das L, Li M, Stevens J, Li W, Pu Y, Ragauskas AJ, Shi J. ACS Sustainable Chem. Eng. 2018; 6: 10408
    • 29a Baiker A. Chem. Rev. 1999; 99: 453
    • 29b Musie G, Wei M, Subramaniam B, Busch DH. Coord. Chem. Rev. 2001; 219-221: 789
    • 29c Leitner W. Acc. Chem. Res. 2002; 35: 746
  • 30 Cole-Hamilton DJ. Adv. Synth. Catal. 2006; 348: 1341
    • 31a Zhang Z, Ma J, Han B. Catalysis in Supercritical Fluids . In Bridging Heterogeneous and Homogeneous Catalysis, 1st ed. Li C, Liu Y. Wiley-VCH; Weinheim: 2014. Chap. 13, 469
    • 31b Lee S.-G, Zhang YJ. Enantioselective Catalysis in Ionic Liquids and Supercritical CO2 . In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 7, 233
    • 32a Zhan E, Chen C, Li Y, Shen W. Catal. Sci. Technol. 2015; 5: 650
    • 32b Baiker A. Chem. Soc. Rev. 2015; 44: 7449
    • 32c Bartók M. Curr. Org. Chem. 2006; 10: 1533
    • 32d Mallat T, Orglmeister E, Baiker A. Chem. Rev. 2007; 107: 4863
    • 32e Bürgi T, Baiker A. Acc. Chem. Res. 2004; 37: 909
    • 32f Sugimura T. Heterogeneous Enantioselective Hydrogenation on Metal Surface Modified by Chiral Molecules. In Handbook of Asymmetric Heterogeneous Catalysis, 1st ed. Ding K, Uozumi Y. Wiley-VCH; Weinheim: 2008. Chap. 10, 357
    • 33a Meemken F, Baiker A. Chem. Rev. 2017; 117: 11522
    • 33b Maeda N, Hungerbühler K, Baiker A. J. Am. Chem. Soc. 2011; 133: 19567
    • 33c Meemken F, Hungerbühler K, Baiker A. Angew. Chem. Int. Ed. 2014; 53: 8640
    • 33d Schmidt E, Bucher C, Santarossa G, Mallat T, Gilmour R, Baiker A. J. Catal. 2012; 289: 238
    • 33e Meemken F, Maeda N, Hungerbühler K, Baiker A. Angew. Chem. Int. Ed. 2012; 51: 8212
  • 34 Blaser HU, Studer M. Acc. Chem. Res. 2007; 40: 1348
  • 35 Meemken F, Baiker A, Schenker S, Hungerbühler K. Chem. Eur. J. 2014; 20: 1298
    • 36a Bürgi T, Baiker A. J. Catal. 2000; 194: 445
    • 36b Baiker A. J. Mol. Catal. A: Chem. 2000; 163: 205
    • 36c Wang Y, Su N, Ye L, Ren Y, Chen X, Du Y, Li Z, Yue B, Chi S, Tsang E, Chen Q, He H. J. Catal. 2014; 313: 113
    • 37a Tamura M, Fujihara H. J. Am. Chem. Soc. 2003; 125: 15742
    • 37b Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B. J. Am. Chem. Soc. 2004; 126: 1592
    • 37c Park KH, Chung YK. Adv. Synth. Catal. 2005; 347: 854
    • 38a Choudary BM, Kantam ML, Ranganath KV. S, Mahendar K, Sreedhar B. J. Am. Chem. Soc. 2004; 126: 3396
    • 38b Choudary BM, Ranganath KV. S, Pal U, Kantam ML, Sreedhar B. J. Am. Chem. Soc. 2005; 127: 13167
    • 39a Shen Y, Chen Q, Luo L.-L, Yu K, Ding F, Liu S. Catal. Lett. 2010; 137: 104
    • 39b Sarkar SM, Yusoff MM, Rahman ML. J. Chin. Chem. Soc. 2015; 62: 177
    • 39c Chen S.-J, You H.-X, Vo-Thanh G, Liu Y. Monatsh. Chem. 2013; 144: 851
    • 39d Lou L.-L, Du H, Shen Y, Yu K, Yu W, Chen Q, Liu S. Microporous Mesoporous Mater. 2014; 187: 94
    • 39e Cheng T, Long J, Liang X, Liu R, Liu G. Mater. Res. Bull. 2014; 53: 1
  • 40 Xu Y, Cheng T, Long J, Liu K, Qian Q, Gao F, Liu G, Li H. Adv. Synth. Catal. 2012; 354: 3250
  • 41 Long J, Liu G, Cheng T, Yao H, Qian Q, Zhuang J, Gao F, Li H. J. Catal. 2013; 298: 41
  • 42 Gao F, Jin R, Zhang D, Liang Q, Ye Q, Liu G. Green Chem. 2013; 15: 2208
  • 43 Liu R, Cheng T, Kong L, Chen C, Liu G, Li H. J. Catal. 2013; 307: 55
  • 44 Zhang H, Jin R, Yao H, Tang S, Zhuang J, Liu G, Li H. Chem. Commun. 2012; 48: 7874
  • 45 Modungo G, Monney A, Bonchio M, Albrecht M, Carraro M. Eur. J. Inorg. Chem. 2014; 2356
  • 46 Xiao W, Jin R, Cheng T, Xia D, Yao H, Gao F, Deng B, Liu G. Chem. Commun. 2012; 48: 11898
  • 47 Tang S, Jin R, Zhang H, Yao H, Zhuang J, Liu G, Li H. Chem. Commun. 2012; 48: 6286
  • 48 Ganesamoorthy S, Jerome P, Shanmugasundaram K, Karvembu R. RSC Adv. 2014; 4: 27955
  • 49 Wang Z, Huang L, Geng L, Chen R, Xing W, Wang Y, Huang J. Catal. Lett. 2015; 145: 1008
  • 50 Gopiraman M, Babu SG, Khatri Z, Wei K, Endo M, Karvembu R, Kim IS. Catal. Sci. Technol. 2013; 3: 1485
  • 51 Gopiraman M, Babu SG, Karvembu R, Kim IS. Appl. Catal. A: Gen. 2014; 484: 84
  • 52 Blanco M, Álvarez P, Blanco C, Jiménez MV, Fernández-Tornos J, Pérez-Torrente JJ, Oro LA, Menéndez R. ACS Catal. 2013; 3: 1307
    • 53a Guino M, Hii KK. M. Chem. Soc. Rev. 2007; 36: 608
    • 53b Bergbreiter DE, Tian JH, Hongfa C. Chem. Rev. 2009; 109: 530
    • 53c McNamara CA, Dixon MJ, Bradley M. Chem. Rev. 2002; 102: 3275
  • 54 Zhang X, Zhao Y, Peng J, Yang Q. Green Chem. 2015; 17: 1899
    • 55a Modak A, Mondal J, Sasidharan M, Bhaumik A. Green Chem. 2011; 13: 1317
    • 55b Salam N, Banerjee B, Roy AS, Mondal P, Roy S, Bhaumik A, Islam SM. Appl. Catal. A: Chem. 2014; 477: 184
  • 56 Salam N, Kundu SK, Roy AS, Mondal P, Ghosh K, Bhaumik A, Islam SM. Dalton Trans. 2014; 43: 7057
  • 57 Sun Q, Jin Y, Zhu L, Wang L, Meng X, Xiao F. Nano Today 2013; 8: 342
  • 58 Arakawa Y, Chiba A, Haraguchi N, Itsuno S. Adv. Synth. Catal. 2008; 350: 2295
  • 59 Xu X, Wang R, Wan J, Ma X, Peng J. RSC Adv. 2013; 3: 6747
  • 60 Wang R, Wan J, Ma X, Xu X, Liu L. Dalton Trans. 2013; 42: 6513
  • 61 Molla RA, Roy AS, Ghosh K, Salam N, Iqubal MA, Tuhina K, Islam SM. J. Organomet. Chem. 2015; 776: 170
  • 62 Marcos R, Jimeno C, Pericàs MA. Adv. Synth. Catal. 2011; 353: 1345
  • 63 Haraguchi N, Nishiyama A, Itsuno S. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 3340
  • 64 Zhou Z, Ma Q. Appl. Organomet. Chem. 2011; 25: 233
  • 65 Indra A, Maity P, Bhaduri S, Lahiri GK. ChemCatChem 2013; 5: 322
  • 66 Wei J, Zhang X, Zhang X, Zhao Y, Li R, Yang Q. ChemCatChem 2014; 6: 1368
  • 67 Astruc D, Boisselier E, Ornelas C. Chem. Rev. 2010; 110: 1857
  • 68 Wang W.-W, Wang Q.-R. Chem. Commun. 2010; 46: 4616
  • 69 Wang W.-W, Li Z.-M, Su L, Wang Q.-R, Wu Y.-L. J. Mol. Catal. A: Chem. 2014; 387: 92
  • 70 Dimroth J, Keilitz J, Schedler U, Schomäcker R, Haag R. Adv. Synth. Catal. 2010; 352: 2497
  • 71 Xie Y, Wang M, Wu X, Chen C, Ma W, Dong Q, Yuan M, Hou Z. ChemPlusChem 2016; 81: 541
    • 72a Lu J, Dimroth J, Weck M. J. Am. Chem. Soc. 2015; 137: 12984
    • 72b Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 10600
    • 72c Agapakis CM, Boyle PM, Silver PA. Nat. Chem. Biol. 2012; 8: 527
    • 73a Dalpozzo R. Green Chem. 2015; 17: 3671
    • 73b Shoola CO, DelMastro T, Wu R, Sowa JR. Eur. J. Org. Chem. 2015; 1670
  • 74 Baig RB. N, Varma RS. ACS Sustainable Chem. Eng. 2013; 1: 805
  • 75 Liu G, Gu H, Sun Y, Long J, Xu Y, Li H. Adv. Synth. Catal. 2011; 353: 1317
  • 76 Sun Y, Liu G, Gu H, Huang T, Zhang Y, Li H. Chem. Commun. 2011; 47: 2583
  • 77 Dayan S, Arslan F, Ozpozan NK. Appl. Catal. B 2015; 164: 305
  • 78 Gao X, Liu R, Zhang D, Wu M, Cheng T, Liu G. Chem. Eur. J. 2014; 20: 1515
    • 79a Serpell CJ, Cookson J, Ozkaya D, Beer PD. Nat. Chem. 2011; 3: 478
    • 79b Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JM, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA. Science 2008; 322: 932
  • 80 Gawande MB, Guo H, Rathi AK, Branco PS, Chen Y, Varmad RS, Peng D.-L. RSC Adv. 2013; 3: 1050
  • 81 Scholz D, Aellig C, Hermans I. ChemSusChem 2014; 7: 268