Synthesis 2020; 52(11): 1617-1624
DOI: 10.1055/s-0039-1708005
short review
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Driven Transformations of Phenols via Energy Transfer Catalysis

Jérôme Fischer
,
Pierrick Nun
,
Université de Nantes, CEISAM UMR CNRS 6230, 44000 Nantes, France   Email: [email protected]
› Author Affiliations
This work was supported by The Région Pays de la Loire (NANO2 project) which financed a Ph.D. grant for J.F. We also thank University of Nantes and CNRS for financial support.
Further Information

Publication History

Received: 28 November 2019

Accepted after revision: 26 February 2020

Publication Date:
02 April 2020 (online)


Abstract

In the past decade, the field of visible-light-mediated photocatalysis has been particularly thriving by offering innovative synthetic tools for the construction of functionalized architectures from simple and readily available substrates. One strategy that has been of interest is energy transfer catalysis, which is a powerful way of activating a substrate or an intermediate by using the combination of light and a relevant photosensitizer. This review deals with recent advances in energy transfer catalysis applied to phenols, which are ubiquitous in chemistry both as starting materials and as high-added-value products. Processes involving energy transfer from the excited photosensitizer to ground state oxygen and to phenol-containing substrates will be described.

1 Introduction

2 Intermolecular Processes

2.1 Reactions with Singlet Oxygen

2.2 [2+2] Cycloadditions

3 Intramolecular Transformations

4 Conclusions and Outlook

 
  • References


    • For selected references, see:
    • 1a Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018
    • 1b Glusac K. Nat. Chem. 2016; 8: 734
    • 1c Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 1d Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 1e Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 1f Bach T. Angew. Chem. Int. Ed. 2015; 54: 11294
    • 1g Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 1h Hoffmann N. Chem. Rev. 2008; 108: 1052
    • 2a Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 2b Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 2c Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 2d Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 3a Nicholls TP, Leonori D, Bissember AC. Nat. Prod. Rep. 2016; 33: 1248
    • 3b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 3c Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 3d Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 3e Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 4a Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
    • 4b Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190

      For selected recent examples, see:
    • 5a Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
    • 5b Oderinde MS, Kempson J, Smith D, Meanwell NA, Mao E, Pawluczyk J, Vetrichelvan M, Pitchai M, Karmakar A, Rampulla R, Li J, Dhar TG. M, Mathur A. Eur. J. Org. Chem. 2020; 41
    • 5c Day JI, Singh K, Trinh W, Weaver JD. J. Am. Chem. Soc. 2018; 140: 9934
    • 5d James MJ, Schwarz JL, Strieth-Kalthoff F, Wibbeling B, Glorius F. J. Am. Chem. Soc. 2018; 140: 8624
    • 5e Hörmann FM, Chung TS, Rodriguez E, Jakob M, Bach T. Angew. Chem. Int. Ed. 2018; 57: 827
    • 5f Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
    • 5g Denisenko AV, Druzhenko T, Skalenko Y, Samoilenko M, Grygorenko OO, Zozulya S, Mykhailiuk PK. J. Org. Chem. 2017; 82: 9627
    • 5h Huang X, Quinn TR, Harms K, Webster RD, Zhang L, Wiest O, Meggers E. J. Am. Chem. Soc. 2017; 139: 9120
    • 5i Skubi KL, Kidd JB, Jung H, Guzei IA, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2017; 139: 17186
    • 5j Bagal DB, Park S.-W, Song H.-J, Chang S. Chem. Commun. 2017; 53: 8798
    • 5k Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
    • 5l Luis-Barrera J, Laina-Martín V, Rigotti T, Peccati F, Solans-Monfort X, Sodupe M, Mas-Ballesté R, Liras M, Alemán J. Angew. Chem. Int. Ed. 2017; 56: 7826
  • 6 Weber M, Weber M, Kleine-Boymann M. Phenol . In Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 26. Wiley-VCH; Weinheim: 2004: 503-519
  • 7 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 8a Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
    • 8b Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 8c Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
  • 9 Huang Z, Lumb J.-P. ACS Catal. 2019; 9: 521
  • 10 Amen-Chen C, Pakdel H, Roy C. Bioresour. Technol. 2001; 79: 277
  • 11 Singlet Oxygen: Applications in Biosciences and Nanosciences . Nonell S, Flors C. The Royal Society of Chemistry; Cambridge: 2016
  • 12 Al-Nu’airat J, Dlugogorski BZ, Gao X, Zeinali N, Skut J, Westmoreland PR, Oluwoye I, Altarawneh M. Phys. Chem. Chem. Phys. 2019; 21: 171
    • 13a Barradas S, Carreño MC, González-López M, Latorre A, Urbano A. Org. Lett. 2007; 9: 5019
    • 13b Carreño MC, González-López M, Urbano A. Angew. Chem. Int. Ed. 2006; 45: 2737
    • 14a Zilbeyaz K, Sahin E, Kilic H. Tetrahedron: Asymmetry 2007; 18: 791
    • 14b Adam W, Kilic H, Saha-Möller CR. Synlett 2002; 510
  • 15 Arbogast JW, Darmanyan AP, Foote CS, Diederich FN, Whetten RL, Rubin Y, Alvarez MM, Anz SJ. J. Phys. Chem. 1991; 95: 11
  • 16 Hoye TR, Jeffrey CS, Nelson DP. Org. Lett. 2010; 12: 52
  • 17 Chen Y, Urano T, Karatsu T, Takahara S, Yamaoka T, Tokumaru K. J. Chem. Soc., Perkin Trans. 2 1998; 2233
  • 18 Jones KM, Hillringhaus T, Klussmann M. Tetrahedron Lett. 2013; 54: 3294
    • 19a For a review, see: Ghogare AA, Greer A. Chem. Rev. 2016; 116: 9994

    • For other examples of photooxygenation of para-substituted phenol as a key step in total synthesis, see:
    • 19b Park KH, Chen DY.-K. Chem. Commun. 2018; 54: 13018
    • 19c Cabrera-Afonso MJ, Lucena SR, Juarranz Á, Urbano A, Carreño MC. Org. Lett. 2018; 20: 6094
    • 19d Kimishima A, Umihara H, Mizoguchi A, Yokoshima S, Fukuyama T. Org. Lett. 2014; 16: 6244
  • 20 Tong G, Liu Z, Li P. Org. Lett. 2014; 16: 2288
  • 21 Umihara H, Yoshino T, Shimokawa J, Kitamura M, Fukuyama T. Angew. Chem. Int. Ed. 2016; 55: 6915
  • 22 Mauger A, Farjon J, Nun P, Coeffard V. Chem. Eur. J. 2018; 24: 4790
  • 23 Wu W, Guo H, Wu W, Ji S, Zhao J. J. Org. Chem. 2011; 76: 7056
  • 24 Mehta G, Sengupta S. Tetrahedron 2017; 73: 6223
  • 25 Péault L, Nun P, Le Grognec E, Coeffard V. Chem. Commun. 2019; 55: 7398
  • 26 Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science 2016; 354: 1391
  • 27 Kirgan RA, Witek PA, Moore C, Rillema DP. Dalton Trans. 2008; 3189
  • 28 Ma L, Fang W.-H, Shen L, Chen X. ACS Catal. 2019; 9: 3672
  • 29 Miller ZD, Lee BJ, Yoon TP. Angew. Chem. Int. Ed. 2017; 56: 11891
  • 30 Yu H, Dong S, Yao Q, Chen L, Zhang D, Liu X, Feng X. Chem. Eur. J. 2018; 24: 19361
  • 31 Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2012; 51: 10329
  • 32 Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
  • 33 Xia Z, Corcé V, Zhao F, Przybylski C, Espagne A, Jullien L, Le Saux T, Gimbert Y, Dossmann H, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Nat. Chem. 2019; 11: 797