Synthesis 2020; 52(21): 3286-3294
DOI: 10.1055/s-0040-1705892
special topic
Recent Advances in Amide Bond Formation

A Practical Approach for the Transamidation of N,N-Dimethyl Amides with Primary Amines Promoted by Sodium tert-Butoxide under Solvent-Free Conditions

a  Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, P. R. of China   Email: cch510@126.com
,
Jun-Chao Zhang
a  Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, P. R. of China   Email: cch510@126.com
,
Wei-Yi Zhang
a  Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, P. R. of China   Email: cch510@126.com
,
Yu-Qing He
a  Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, P. R. of China   Email: cch510@126.com
,
Hua Cheng
a  Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, P. R. of China   Email: cch510@126.com
,
Cheng Chen
b  State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China   Email: chengchen@whut.edu.cn
,
c  Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
› Author Affiliations
This research was supported by the National Natural Science Foundation of China (Grant No. 21502062), the Scientific Research Program Guiding Project of Hubei Provincial Department of Education (Grant No. B2019135), the Teachers’ Scientific Research Ability Cultivation Fund, Hubei University of Arts and Science (Natural Science, Grant No. 2018kypy001), the Foundation of Hubei University of Arts and Science (Grant No. 2059057), the Open Foundation of Discipline of Hubei University of Arts and Science (Grant Nos. XK2019038, XK2019039), and the National Natural Science Foundation Cultivation Project of Hubei University of Arts and Science (Grant No. 2019kypygp003).


This paper is dedicated to Professor Youyou Tu, the 2015 Nobel Prize Laureate of Physiology or Medicine, on the occasion of her 90th birthday

Abstract

A practical sodium tert-butoxide (NaOtBu)-mediated protocol is disclosed for the transamidation of various N,N-dimethyl amides with primary amines to afford the corresponding amides in moderate to good yields at room temperature under solvent-free conditions. This protocol features a facile work-up procedure and good functional group compatibility, especially for N,N-dimethyl amides with long-chain alkyl groups and heteroatom-containing amines. Notably, a few representative gram-scale reactions proceed smoothly to furnish the desired amides in high yields, which demonstrates the potential of this process for further practical applications. Several control experiments are carried out and a plausible mechanism is provided.

Supporting Information



Publication History

Received: 29 May 2020

Accepted after revision: 22 July 2020

Publication Date:
08 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 2b Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 3a El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 3b Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 4a Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 4b Chen C, Hong SH. Org. Biomol. Chem. 2011; 9: 20
    • 4c Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
    • 4d Gunanathan C, Milstein D. Science 2013; 341: 249
    • 4e de Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
    • 4f Chen C, Verpoort F, Wu Q. RSC Adv. 2016; 6: 55599
    • 4g Wang X. Nat. Catal. 2019; 2: 98
    • 4h Li, G. C.; Szostak, M. Synthesis 2020, 52, 2579.
    • 5a Li G, Szostak M. Chem. Rec. 2020; 20: 649
    • 5b Acosta-Guzmán P, Mateus-Gómez A, Gamba-Sánchez D. Molecules 2018; 23: 2382
    • 6a Lee MV, Raga SR, Kato Y, Leyden MR, Ono LK, Wang SH, Qi YB. J. Mater. Res. 2017; 32: 45
    • 6b Azizi A, Kabiri K, Zohuriaan-Mehr MJ, Bouhendi H, Karami Z. J. Mater. Res. 2018; 33: 2327
    • 7a Cretenoud J, Galland S, Plummer CJ. G, Michaud V, Bayer A, Lamberts N, Hoffmann B, Frauenrath H. J. Appl. Polym. Sci. 2017; 134: 44349
    • 7b Liu ZY, Yu CY, Zhang CX, Shi ZX, Yin J. ACS Macro Lett. 2019; 8: 233
    • 8a Kiraly R, Thangaraju K, Nagy Z, Collighan R, Nemes Z, Griffin M, Fesus L. Amino Acids 2016; 48: 31
    • 8b Rachel NM, Pelletier JN. Chem. Commun. 2016; 52: 2541
    • 8c Thompson RE, Stevens AJ, Muir TW. Nat. Chem. 2019; 11: 737
    • 9a Pham VH, Maaroufi H, Balg C, Blais SP, Messier N, Roy PH, Otis F, Voyer N, Lapointe J, Chenevert R. FEBS Lett. 2016; 590: 3335
    • 9b Luongo D, Bonavita R, Rossi S, Aufiero VR, Feliciello NR, Maurano F, Iaquinto G, Mazzarella G, Rossi M. Cytokine 2019; 117: 23
    • 10a Eldred SE, Stone DA, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2003; 125: 3422
    • 10b Hoerter JM, Otte KM, Gellman SH, Cui Q, Stahl SS. J. Am. Chem. Soc. 2008; 130: 647
  • 11 Shi M, Cui SC. Synth. Commun. 2005; 35: 2847
  • 12 Tamura M, Tonomura T, Shimizu K, Satsuma A. Green Chem. 2012; 14: 717
    • 13a Stephenson NA, Zhu J, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2009; 131: 10003
    • 13b Atkinson BN, Chhatwal AR, Lomax HV, Walton JW, Williams JM. J. Chem. Commun. 2012; 48: 11626
  • 14 Ghosh SC, Li CC, Zeng HC, Ngiam JS. Y, Seayad AM, Chen A. Adv. Synth. Catal. 2014; 356: 475
    • 15a Baker EL, Yamano MM, Zhou YJ, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
    • 15b Sonawane RB, Rasal NK, Jagtap SV. Org. Lett. 2017; 19: 2078
  • 16 Zhang M, Imm S, Bähn S, Neubert L, Neumann H, Beller M. Angew. Chem. Int. Ed. 2012; 51: 3905
  • 17 Becerra-Figueroa L, Ojeda-Porras A, Gamba-Sánchez D. J. Org. Chem. 2014; 79: 4544
  • 18 Zhou TL, Li GC, Nolan SP, Szostak M. Org. Lett. 2019; 21: 3304
  • 19 Sheng HT, Zeng RJ, Wang WJ, Luo SW, Feng Y, Liu J, Chen WJ, Zhu MZ, Guo QX. Adv. Synth. Catal. 2017; 359: 302
    • 20a Dineen TA, Zajac MA, Myers AG. J. Am. Chem. Soc. 2006; 128: 16406
    • 20b Starkov P, Sheppard TD. Org. Biomol. Chem. 2011; 9: 1320
    • 20c Allen CL, Atkinson BN, Williams JM. J. Angew. Chem. Int. Ed. 2012; 51: 1383
    • 20d Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 3202
    • 20e Rao SN, Mohan DC, Adimurthy S. Org. Lett. 2013; 15: 1496
    • 20f Lanigan RM, Starkov P, Sheppard TD. J. Org. Chem. 2013; 78: 4512
    • 20g Vanjari R, Allam BK, Singh KN. RSC Adv. 2013; 3: 1691
    • 20h Vanjari R, Allam BK, Singh KN. Tetrahedron Lett. 2013; 54: 2553
    • 20i Lebleu T, Kotsuki H, Maddaluno J, Legros J. Tetrahedron Lett. 2014; 55: 362
    • 20j Liu YM, Shi SC, Achtenhagen M, Liu RZ, Szostak M. Org. Lett. 2017; 19: 1614
    • 20k Liu YM, Achtenhagen M, Liu RZ, Szostak M. Org. Biomol. Chem. 2018; 16: 1322
    • 20l Li GC, Szostak M. Nat. Commun. 2018; 9: 4165
    • 20m Verho O, Lati MP, Oschmann M. J. Org. Chem. 2018; 83: 4464
    • 20n Li GC, Ji CL, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
    • 20o Rahman MM, Li GC, Szostak M. J. Org. Chem. 2019; 84: 12091
    • 20p Ramkumar R, Chandrasekaran S. Synthesis 2019; 51: 921
    • 20q Yin JW, Zhang JY, Cai CQ, Deng GJ, Gong H. Org. Lett. 2019; 21: 387
  • 21 Tan ZY, Li ZH, Ma Y, Qin JJ, Yu CM. Eur. J. Org. Chem. 2019; 4538
  • 22 Ghosh T, Jana S, Dash J. Org. Lett. 2019; 21: 6690
  • 23 Li GC, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2020; 10: 710
  • 24 Rao CP, Rao AM, Rao CN. R. Inorg. Chem. 1984; 23: 2080
    • 25a Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
    • 25b Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 25c Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. Nat. Chem. 2010; 2: 1044
    • 25d Rueping M, Leiendecker M, Das A, Poisson T, Bui L. Chem. Commun. 2011; 47: 10629
    • 25e Shirakawa E, Zhang X, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 4671
    • 25f Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
    • 25g Yanagisawa S, Itami K. ChemCatChem 2011; 3: 827
    • 25h Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE. A, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402
  • 26 Salamone M, Mangiacapra L, Bietti M. J. Org. Chem. 2015; 80: 1149
  • 27 Toffano M, Legros JY, Fiaud JC. Tetrahedron Lett. 1997; 38: 77
  • 28 Hosseini-Sarvari M, Sharghi H. J. Org. Chem. 2006; 71: 6652
  • 29 Li HF, Gonçalves TP, Zhao QY, Gong DR, Lai ZP, Wang ZX, Zheng JR, Huang KW. Chem. Commun. 2018; 54: 11395
  • 30 Pace V, de la Vega-Hernández K, Urban E, Langer T. Org. Lett. 2016; 18: 2750
  • 31 Shah N, Gravel E, Jawale DV, Doris E, Namboothiri IN. N. ChemCatChem 2014; 6: 2201
  • 32 Das S, Bobbink FD, Bulut S, Soudani M, Dyson PJ. Chem. Commun. 2016; 52: 2497
  • 33 Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Chem. Commun. 2018; 54: 654