Synlett
DOI: 10.1055/s-0040-1705942
synpacts

Helical Carbenium Ion-Based Organic Photoredox Catalyst: A Versatile and Sustainable Option in Red-Light-Induced Reactions

Liangyong Mei
,
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA   eMail: tgianetti@arizona.edu
› Institutsangaben
We are grateful for financial support from the University of Arizona for this work.


Abstract

The development of a sustainable catalytic system for red-light-induced photocatalysis is presented. The catalytic system consists of a helical carbenium ion-based organic photoredox catalyst (PC) that is capable of using low-energy red light (λmax = 640 nm) for both photooxidations and photoreductions. Its successful applications in the aerobic oxidative hydroxylation of arylboronic acids and in the oxidation of benzylic C(sp3)–H bonds (reductive quenching), as well as in dual transition-metal/organocatalyzed C–H arylations and intermolecular atom-transfer radical additions (oxidative quenching) provide further support for its role as a versatile and efficient organic PC.

1 Introduction

2 Red-Light-Induced Photocatalysis

3 Properties of N,N′-Dipropyl-1,13-dimethoxyquinacridinium Tetrafluoroborate

4 Two Proposed Representative Catalytic Cycles of [ n Pr-DMQA+][BF4 ]

5 Applications of [ n Pr-DMQA+][BF4 ] in Red-Light-Induced Photocatalysis

6 Conclusion



Publikationsverlauf

Eingereicht: 10. September 2020

Angenommen nach Revision: 20. September 2020

Publikationsdatum:
12. Oktober 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1b Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 1c Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 1d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 1e Twilton J, Le CC, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 2a Hofbeck T, Yersin H. Inorg. Chem. 2010; 49: 9290
    • 2b Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
    • 2c Juris A, Balzani V, Belser P, von Zelewsky A. Helv. Chim. Acta 1981; 64: 2175
    • 3a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 3b Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
  • 4 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600

    • For selected examples, see:
    • 5a Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
    • 5b Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
    • 6a Hari DP, König B. Chem. Commun. 2014; 50: 6688
    • 6b Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377
    • 7a Ham WT. Jr, Mueller HA, Sliney DH. Nature 1976; 260: 153
    • 7b Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Sci. Rep. 2014; 4: 5223
    • 7c Revell VL, Skene DJ. Chronobiol. Int. 2007; 24: 1125
  • 8 Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Chem. Rev. 2005; 105: 2647

    • For selected examples, see:
    • 9a Fülöp A, Peng X, Greenberg MM, Mokhir A. Chem. Commun. 2010; 46: 5659
    • 9b Carling C.-J, Olejniczak J, Foucault-Collet A, Collet G, Viger ML, Nguyen Huu VA, Duggan BM, Almutairi A. Chem. Sci. 2016; 7: 2392
    • 9c Zhang H, Trout WS, Liu S, Andrade GA, Hudson DA, Scinto SL, Dicker KT, Li Y, Lazouski N, Rosenthal J, Thorpe C, Jia X, Fox JM. J. Am. Chem. Soc. 2016; 138: 5978
    • 10a Cocquet G, Ferroud C, Simon P, Taberna PL. J. Chem. Soc., Perkin Trans. 2 2000; 1147
    • 10b Cocquet G, Ferroud C, Guy A. Tetrahedron 2000; 56: 2975
  • 11 Lee J, Papatzimas JW, Bromby AD, Gorobets E, Derksen DJ. RSC Adv. 2016; 6: 59269
  • 12 Matsuzaki K, Hiromura T, Tokunaga E, Shibata N. ChemistryOpen 2017; 6: 226
  • 13 Yerien DE, Cooke MV, García Vior MC, Barata-Vallejo S, Postigo A. Org. Biomol. Chem. 2019; 17: 3741
  • 14 Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Nature 2019; 565: 343
  • 15 Ravetz BD, Tay NE. S, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. ChemRxiv 2020; DOI: preprint; 10.26434/chemrxiv.12124215.v1.
  • 16 Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F. ChemPhotoChem 2019; 3: 24
  • 17 Bosson J, Gouin J, Lacour J. Chem. Soc. Rev. 2014; 43: 2824
    • 18a Laursen BW, Krebs FC. Angew. Chem. Int. Ed. 2000; 39: 3432
    • 18b Hernández Delgado I, Pascal S, Wallabregue A, Duwald R, Besnard C, Guénée L, Nançoz C, Vauthey E, Tovar RC, Lunkley JL, Muller G, Lacour J. Chem. Sci. 2016; 7: 4685
  • 19 Sørensen TJ, Nielsen MF, Laursen BW. ChemPlusChem 2014; 79: 1030
    • 20a Duwald R, Pascal S, Bosson J, Grass S, Besnard C, Bürgi T, Lacour J. Chem. Eur. J. 2017; 23: 13596
    • 20b Mei L, Veleta JM, Bloch J, Goodman HJ, Pierce-Navarro D, Villalobos A, Gianetti TL. Dalton Trans. 2020; in press; DOI: 10.1039/d0dt00419g
  • 21 Kel O, Fürstenberg A, Mehanna N, Nicolas C, Laleu B, Hammarson M, Albinsson B, Lacour J, Vauthey E. Chem. Eur. J. 2013; 19: 7173
  • 22 Nicolas C, Herse C, Lacour J. Tetrahedron Lett. 2005; 46: 4605
  • 23 Mei L, Veleta JM, Gianetti TL. J. Am. Chem. Soc. 2020; 142: 12056
    • 24a Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
    • 24b Luo J, Zhang J. ACS Catal. 2016; 6: 873
    • 24c Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
  • 25 Shaikh AC, Moutet J, Veleta JM, Hossain MM, Bloch J, Astashkin AV, Gianetti TL. Chem. Sci. 2020; in press; DOI: 10.1039/d0sc04850j.

    • For selected examples, see:
    • 26a Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 26b Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. J. Am. Chem. Soc. 2013; 135: 13286
    • 27a Pavlishchuk VV, Addison AW. Inorg. Chim. Acta 2000; 298: 97
    • 27b Barbante GJ, Kebede N, Hindson CM, Doeven EH, Zammit EM, Hanson GR, Hogan CF, Francis PS. Chem. Eur. J. 2014; 20: 14026
    • 27c Schwarz J, König B. Green Chem. 2016; 18: 4743
  • 28 Wood PM. FEBS Lett. 1974; 44: 22

    • For selected examples, see:
    • 29a Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. ACS Catal. 2018; 8: 6659
    • 29b Finney LC, Mitchell LJ, Moody CJ. Green Chem. 2018; 20: 2242
  • 30 Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 31a Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant JM. J. Am. Chem. Soc. 1997; 119: 201
    • 31b Andrieux CP, Pinson J. J. Am. Chem. Soc. 2003; 125: 14801
  • 32 Tlahuext-Aca A, Hopkinson MN, Sahoo B, Glorius F. Chem. Sci. 2016; 7: 89

    • For selected examples, see:
    • 33a Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
    • 33b Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
    • 33c Wallentin CJ, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 33d Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950