Synlett 2021; 32(10): 981-986
DOI: 10.1055/s-0040-1706038
letter

A Palladium-Catalyzed Oxa-(4+4)-Cycloaddition Strategy Towards Oxazocine Scaffolds

Anaïs Scuiller
a   Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA Paris, CNRS, IP Paris, 91128 Palaiseau, France
,
Xueyang Liu
a   Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA Paris, CNRS, IP Paris, 91128 Palaiseau, France
,
Marie Cordier
b   Laboratoire de Chimie Moléculaire, UMR 9168, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
,
Julian Garrec
c   Unité Chimie et Procédés, ENSTA Paris, IP Paris, 91120 Palaiseau, France
,
a   Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA Paris, CNRS, IP Paris, 91128 Palaiseau, France
› Author Affiliations
This work was supported by the Agence Nationale de la Recherche (JCJC grant CycloSyn, ANR-18-CE07-0008). X.L. thanks the Agence Nationale de la Recherche for a M2 grant. A.S. thanks Labex CHARMMMAT (ANR-11-LABX-0039) for a M2 grant and the Agence Nationale de la Recherche for a PhD fellowship.


Abstract

A Pd-catalyzed oxa-(4+4)-cycloaddition between 1-azadienes and (2-hydroxymethyl)allyl carbonates is described. Aurone-derived azadienes furnished polycyclic 1,5-oxazocines in good yields. Interestingly, linear azadienes have also been involved and yielded monocyclic heterocycles with complete regioselectivity. DFT calculations were carried out to gain insight on this observation.

Supporting Information



Publication History

Received: 16 March 2021

Accepted after revision: 17 April 2021

Article published online:
19 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Current address: Univ Rennes, CNRS ISCR-UMR 6226, 35000 Rennes, France.
    • 2a Bodireddy MR, Krishnaiah K, Babu PK, Bitra C, Gajula MR, Kumar P. Org. Process Res. Dev. 2017; 21: 1745
    • 2b Audouze K, Nielsen E. Ø, Peters D. J. Med. Chem. 2004; 47: 3089
    • 2c Dandapani S, Germain AR, Jewett I, Le Quement S, Marie J.-C, Muncipinto G, Duvall JR, Carmody LC, Perez JR, Engel JC, Gut J, Kellar D, Siqueira-Neto JL, McKerrow JH, Kaiser M, Rodriguez A, Palmer MA, Foley M, Schreiber SL, Munoz B. ACS Med. Chem. Lett. 2014; 5: 149
    • 2d Tanioka A, Deguchi T. Drug. Res. 2017; 67: 302
    • 3a Khan AR, Parrish JC, Fraser ME, Smith WW, Bartlett PA, James MN. G. Biochemistry 1998; 37: 16839
    • 3b Taylor RD, Maccoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 3c Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS. J. Am. Chem. Soc. 2006; 128: 2510
    • 3d Kwon Y.-U, Kodadek T. Chem. Biol. 2007; 14: 671

      For books on medium-sized-ring synthesis, see:
    • 4a Newkome GR. Eight-Membered and Larger Rings . In Progress in Heterocyclic Chemistry . Suschitzky H, Scriven EF. V. Elsevier; Amsterdam: 1991: 319
    • 4b Quirke JM. E. Eight-Membered and Larger Rings Systems, In Heterocyclic Chemistry . Suschitzky H. Royal Society of Chemistry; London: 1986: 455

      For reviews on medium-sized rings, see:
    • 5a Molander GA. Acc. Chem. Res. 1998; 31: 603
    • 5b Yet L. Chem. Rev. 2000; 100: 2963
    • 5c Maier ME. Angew. Chem. Int. Ed. 2000; 39: 2073
    • 5d Roxburgh CJ. Tetrahedron 1993; 49: 10749
    • 5e Donald JR, Unsworth WP. Chem. Eur. J. 2017; 23: 8780
    • 5f Clarke AK, Unsworth WP. Chem. Sci. 2020; 11: 2876
    • 5g Choury M, Basilio Lopes A, Blond G, Gulea M. Molecules 2020; 25: 3147
    • 6a Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
    • 6b Galli C, Mandolini L. Eur. J. Org. Chem. 2000; 3117
  • 7 For a (1+4) cycloaddition, see: Wang C.-S, Li T.-Z, Cheng Y.-C, Zhou J, Mei G.-J, Shi F. J. Org. Chem. 2019; 84: 3214

    • For (2+4) cycloadditions, see:
    • 8a Rong Z.-Q, Wang M, Chow CH. E, Zhao Y. Chem. Eur. J. 2016; 22: 9483
    • 8b Gu Z, Wu B, Jiang G.-F, Zhou Y.-G. Chin. J. Chem. 2018; 36: 1130
    • 8c Fan T, Zhang Z.-J, Zhang Y.-C, Song J. Org. Lett. 2019; 21: 7897
    • 8d Li X, Yan J, Qin J, Lin S, Chen W, Zhan R, Huang H. J. Org. Chem. 2019; 84: 8035
    • 8e Marques A.-S, Duhail T, Marrot J, Chataigner I, Coeffard V, Vincent G, Moreau X. Angew. Chem. Int. Ed. 2019; 58: 9969

      For (3+4) cycloadditions, see:
    • 9a Chen J, Jia P, Huang Y. Org. Lett. 2018; 20: 6715
    • 9b Gao Z.-H, Chen K.-Q, Zhang Y, Kong L.-M, Li Y, Ye S. J. Org. Chem. 2018; 83: 15225
    • 9c Trost BM, Zuo Z. Angew. Chem. Int. Ed. 2020; 59: 1243
    • 9d Kumari P, Liu W, Wang C.-J, Dai J, Wang M.-X, Yang Q.-Q, Deng Y.-H, Shao Z. Chin. J. Chem. 2020; 38: 151
    • 9e Liu Y.-Z, Wang Z, Huang Z, Zheng X, Yang W.-L, Deng W.-P. Angew. Chem. Int. Ed. 2020; 59: 1238
    • 9f Yan R.-J, Liu B.-X, Xiao B.-X, Du W, Chen Y.-C. Org. Lett. 2020; 22: 4240

      For (4+4) cycloadditions, see:
    • 10a Ni H, Tang X, Zheng W, Yao W, Ullah N, Lu Y. Angew. Chem. Int. Ed. 2017; 56: 14222
    • 10b Jiang B, Du W, Chen Y.-C. Chem. Commun. 2020; 56: 7257
    • 10c Li Q, Pan R, Wang M, Yao H, Lin A. Org. Lett. 2021; 23: 2292

      For (5+4) cycloadditions, see:
    • 11a Yang L.-C, Rong Z.-Q, Wang Y.-N, Tan ZY, Wang M, Zhao Y. Angew. Chem. Int. Ed. 2017; 56: 2927
    • 11b Rong Z.-Q, Yang L.-C, Liu S, Yu Z, Wang Y.-N, Tan ZY, Huang R.-Z, Lan Y, Zhao Y. J. Am. Chem. Soc. 2017; 139: 15304
    • 11c Scuiller A, Karnat A, Casaretto N, Archambeau A. Org. Lett. 2021; 23: 2332
  • 12 For a (6+4) cycloaddition, see: Wang Y.-N, Yang L.-C, Rong Z.-Q, Liu T.-L, Liu R, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1596
  • 13 Fang Q.-Y, Yi M.-H, Wu X.-X, Zhao L.-M. Org. Lett. 2020; 22: 5266
    • 14a Verma K, Taily IM, Banerjee P. Org. Biomol. Chem. 2019; 17: 8149
    • 14b Trost BM, Zuo Z. Angew. Chem. Int. Ed. 2021; 60: 5806
    • 15a Tian J, Zhou R, Sun H, Song H, He Z. J. Org. Chem. 2011; 76: 2374
    • 15b Yang M, Wang T, Cao S, He Z. Chem. Commun. 2014; 50: 13506
    • 15c Zheng P.-F, Ouyang Q, Niu S.-L, Shuai L, Yuan Y, Jiang K, Liu T.-Y, Chen Y.-C. J. Am. Chem. Soc. 2015; 137: 9390
    • 15d Li H, Luo J, Li B, Yi X, He Z. Org. Lett. 2017; 19: 5637
    • 15e Wang L, Li S, Blümel M, Puttreddy R, Peuronen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2017; 56: 8516
    • 16a Boger DL, Kasper AM. J. Am. Chem. Soc. 1989; 111: 1517
    • 16b Esquivias J, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2007; 129: 1480
    • 16c Han B, Li J.-L, Ma C, Zhang S.-J, Chen Y.-C. Angew. Chem. Int. Ed. 2008; 47: 9971
    • 16d Jiang X, Shi X, Wang S, Sun T, Cao Y, Wang R. Angew. Chem. Int. Ed. 2012; 51: 2084
    • 16e Stark DG, Morrill LC, Yeh P.-P, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Angew. Chem. Int. Ed. 2013; 52: 11642
    • 17a Verma K, Banerjee P. Adv. Synth. Catal. 2017; 359: 3848
    • 17b Bai D, Yu Y, Guo H, Chang J, Li X. Angew. Chem. Int. Ed. 2020; 59: 2740
  • 18 Burlow NP, Howard SY, Saunders CM, Fettinger JC, Tantillo DJ, Shaw JT. Org. Lett. 2019; 21: 1046
  • 19 For a recent exception, see this (4+3) cycloaddition: Yuan C, Zhang H, Yuan M, Xie L, Cao X. Org. Biomol. Chem. 2020; 18: 1082
    • 20a Gao R.-D, Xu Q.-L, Zhang B, Gu Y, Dai L.-X, You S.-L. Chem. Eur. J. 2016; 22: 11601
    • 20b Yuan Z, Pan R, Zhang H, Liu L, Lin A, Yao H. Adv. Synth. Catal. 2017; 359: 4244
    • 20c Mao B, Liu H, Yan Z, Xu Y, Xu J, Wang W, Wu Y, Guo H. Angew. Chem. Int. Ed. 2020; 59: 11316
    • 20d Song X, Xu L, Ni Q. Org. Biomol. Chem. 2020; 18: 6617
    • 20e Dai W, Li C, Liu Y, Han X, Li X, Chen K, Liu H. Org. Chem. Front. 2020; 7: 2612
  • 21 CCDC 2040269 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 22 CCDC 2040268 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 23 See the Supporting Information.
  • 24 Typical Procedure for the Pd-Catalyzed (4+4) Cycloadditions of 2a with 1a (Benzene, rt) In a screw-cap SVL tube filled with argon, Pd2(dba)3 (13.7 mg, 0.015 mmol, 0.05 equiv) and dppe (12.0 mg, 0.03 mmol, 0.1 equiv) were added in benzene (3 mL, 0.1 M) and stirred for 15 min at rt. Carbonate 2a (84.7 mg, 0.45 mmol, 1.5 equiv) and azadiene 1a (113 mg, 0.30 mmol) were then added, the reaction mixture was stirred at rt for 16 h, filtered over silica, and concentrated under reduced pressure to afford the crude product. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 85:15) to afford 3a (109 mg, 81%) as a yellow solid; mp 46 °C. IR (neat): 2922, 1597, 1494, 1452, 1384, 1346, 1180, 1157, 1095, 1069, 747 cm–1. 1H NMR (400 MHz, CDCl3, –20 °C): δ = 7.86 (d, J = 8.2 Hz, 2 H), 7.61–7.58 (m, 1 H), 7.41–7.12 (m, 10 H), 5.45 (s, 1 H), 5.24 (s, 1 H), 5.02 (s, 1 H), 4.91 (d, J = 13.5 Hz, 1 H), 4.58 (d, J = 12.6 Hz, 1 H), 4.24 (d, J = 12.6 Hz, 1 H), 4.10 (d, J = 13.5 Hz, 1 H), 2.44 (s, 3 H). 13C NMR (101 MHz, CDCl3, –20 °C): δ = 154.4, 153.0, 143.5, 139.3, 138.1, 136.4, 129.3 (2 C), 128.5, 128.4 (2 C), 127.8 (2 C), 127.6 (2 C), 126.6, 124.6, 123.1, 122.7, 120.0, 116.0, 111.3, 79.0, 75.9, 54.7, 21.6. HRMS (ESI+): m/z [M + H]+ calcd for C26H24NO4S+: 446.1421; found: 446.1410.