Synthesis 2021; 53(22): 4308-4312
DOI: 10.1055/s-0040-1706039
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Validation of Arylphosphorothiolates as Convergent Substrates for Ar-SF4Cl and Ar-SF5 Synthesis

Lin Wang
,
Shengyang Ni
,
Financial support for this work was provided by the Max-Planck-Gesellschaft, the Max-Planck-Institut für Kohlenforschung, and the Fonds der Chemischen Industrie (VCI). This work was also supported by an Exploration Grant of the Boehringer Ingelheim Foundation (BIS).


Abstract

In this manuscript we describe the oxidative fluorination of aryl phosphorothiolates to access Ar-SF4Cl compounds. These compounds serve as precursors for the highly coveted Ar-SF5 compounds. The use of phosphorothiolates as starting materials permits access to Ar-SF4Cl from a wide variety of available starting materials, namely boronic acids, diazonium salts, aryl iodides, thiophenols, or simple arenes. The protocol has been demonstrated for >10 examples and showed good tolerance to various functional groups. Finally, we demonstrated that AgBF4 can be used as a fluorinating agent, affording good yields of an Ar-SF5.

Supporting Information



Publication History

Received: 16 April 2021

Accepted: 19 April 2021

Article published online:
20 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok V, Liu H. Chem. Rev. 2014; 114: 2432
    • 1b Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 2a Campbell MG, Ritter T. Org. Process Res. Dev. 2014; 18: 474
    • 2b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2c Purser S, Moore PS, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 3a Murphy CD, Sandford G. Expert. Opin. Drug Metab. Toxicol. 2015; 11: 589
    • 3b Xing L, Blakemore DC, Narayanan A, Unwalla R, Lovering F, Denny RA, Zhou H, Bunnage ME. ChemMedChem 2015; 10: 715
  • 5 Tlili A, Toulogat F, Billard T. Angew. Chem. Int. Ed. 2016; 55: 11726
  • 6 Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
  • 7 Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
  • 8 Hu J, Zhang W, Wang F. Chem. Commun. 2009; 48: 7465
    • 9a Barnes-Seeman D, Jain M, Bell L, Ferreira S, Cohen S, Chen XH, Amin J, Snodgrass B, Hatsis P. ACS Med. Chem. Lett. 2013; 4: 514
    • 9b Gianatassio R, Kawamura S, Eprile CL, Foo K, Ge J, Burns AC, Collins MR, Baran PS. Angew. Chem. Int. Ed. 2014; 53: 9851
    • 10a Sowaileh MF, Hazlitt RA, Colby DA. ChemMedChem 2017; 12: 1481
    • 10b Westphal MV, Wolfstädter BT, Plancher J.-M, Gatfield J, Carreira EM. ChemMedChem 2015; 10: 461
  • 11 True JE, Thomas TD, Winter RW, Gard GL. Inorg. Chem. 2003; 42: 4437
    • 12a Matsuzaki K, Okuyama K, Tokunaga E, Saito N, Shiro M, Shibata N. Org. Lett. 2015; 17: 3038
    • 12b Du J, Hua G, Beier P, Slawin AM. Z, Woolins JD. Struct. Chem. 2017; 28: 723
    • 13a Wipf P, Mo T, Geib SJ, Caridha D, Dow GS, Gerena L, Roncal N, Milner EE. Org. Biomol. Chem. 2009; 7: 4163
    • 13b Ajenjo-Barcenas J, Greenhall M, Yarantonello C, Beier P. Beilstein J. Org. Chem. 2016; 12: 192
    • 13c Vida N, Václavík J, Beier P. Beilstein J. Org. Chem. 2016; 12: 192
    • 14a Bowden RD, Comina PJ, Greenhall MP, Kariuki BM, Loveday A, Philp D. Tetrahedron 2000; 56: 3399
    • 14b Altomonte S, Zanda M. J. Fluorine Chem. 2012; 143: 57
    • 14c Savoie PR, Welch JT. Chem. Rev. 2015; 115: 1130
    • 14d Umemoto T, Garrick LM, Saito N. Beilstein J. Org. Chem. 2012; 8: 461
    • 14e Umemoto T, Singh RP. J. Fluorine Chem. 2012; 140: 17
    • 14f Ajenjo J, Klepetářová B, Greenhall M, Bím D, Culka M, Rulíšek L, Beier P. Chem. Eur. J. 2019; 25: 11375
    • 14g Beier P. Pentafluorosulfanylation of Aromatics and Heteroaromatics. In Emerging Fluorinated Motifs: Synthesis, Properties, and Applications, Chap. 18. Ma J.-A, Cahard D. Wiley-VCH; Weinheim: 2020
  • 15 Pitts CR, Bornemann D, Liebing P, Santschi N, Togni A. Angew. Chem. Int. Ed. 2019; 58: 1950
    • 16a Bornemann D, Pitts CR, Ziegler CJ, Pietrasiak E, Trapp N, Kueng S, Santschi N, Togni A. Angew. Chem. Int. Ed. 2019; 58: 12604
    • 16b Brüning F, Pitts CR, Kalim J, Bornemann D, Ghiazza C, de Montmollin J, Trapp N, Billard T, Togni A. Angew. Chem. Int. Ed. 2019; 58: 1893
    • 16c Bornemann D, Pitts CR, Wettstein L, Brüning F, Küng S, Guan L, Trapp N, Grützmacher H, Togni A. Angew. Chem. Int. Ed. 2020; 59: 2279
  • 17 Wang L, Cornella J. Angew. Chem. Int. Ed. 2020; 59: 23510
    • 18a Lecocq J, Todd A. J. Chem. Soc. 1954; 2381
    • 18b Handoko, Benslimane Z, Arora PS. Org. Lett. 2020; 22: 5811
    • 18c Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
  • 19 Chen XY, Pu M, Cheng HG, Sperger T, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 11395
    • 20a Kovacs S, Bayarmagnai B, Aillerie A, Goossen LJ. Adv. Synth. Catal. 2018; 360: 1913
    • 20b Xu J, Zhang LL, Li XQ, Gao YZ, Tang G, Zhao YF. Org. Lett. 2016; 18: 1266
  • 21 Farooq O. New J. Chem. 2000; 24: 81
    • 22a Kanishchev OS, Dolbier WR. Jr. Angew. Chem. Int. Ed. 2015; 54: 280
    • 22b Zhong L, Savoie PR, Filatov AS, Welch JT. Angew. Chem. Int. Ed. 2014; 53: 526
    • 22c Das P, Takada M, Tokunaga E, Saito N, Shibata N. Org. Chem. Front. 2018; 5: 719
    • 22d Cui B, Jia S, Tokunaga E, Saito N, Shibata N. Chem. Commun. 2017; 53: 12738
    • 22e Saidalimu I, Liang Y, Niina K, Tanagawa K, Saito N, Shibata N. Org. Chem. Front. 2019; 6: 1157
    • 22f Lummer K, Ponomarenko MV, Roschenthaler GV, Bremer M, Beier P. J. Fluorine Chem. 2014; 157: 79